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I. NUMERICAL ANALYSIS OF THE VAPOR FLOV AND THE HEAT CONDUCTION

THROUGH THE LIQUID-VICK AND THE WALL IN A HEAT PIPE

1.1 Summary

A numerical analysis is presented for the overall performance of heat

pipes with single or multiple heat sources. The analysis includes the heat

conduction in the wall and liquid-wick regions as well as the

compressibility effect of the vapor flow inside the heat pipe. The

two-dimensional elliptic governing equations in conjunction with the

thermodynamic equilibrium relation and appropriate bondary conditions are

solved numerically for the whole domain. The solutions are compared with

existing experimental data for the vapor and wall temperatures at both low

and high operating temperatures. The effects of conjugate axial

conduction, vapor compressibility, flow reversal, and viscous dissipation

are discussed as well as the accuracy of the parabolic version versus the

elliptic version. The results show that the axial wall conduction tends to

distribute the temperature more uniformly for the heat pipe with large

solid wall and effective liquid thermal conductivity ratios. The

compressible and incompressible models show a very close agreement for the

total pressure drop while the local pressure variations along the heat pipe

are quite different for these two models for the cases with high radial

Reynolds numbers at the interface. Also, the partially parabolic solution

provides fairly accurate results compared with the elliptic solution except



for the cases with a large radial Reynolds number at the interface or large

solid wall and effective liquid thermal conductivity ratios.

2



1.2 Introduction

The heat pipe is a device which has a very high thermal conductance.

It is a closed vacuum tube or chamber of different shapes whose inner

surfaces are lined with a porous capillary wick (Fig. 1.1). The wick is

saturated with the liquid phase of a working fluid, and the remaining

volumc of the tube contains the vapor phase. Heat applied at the

evaporator causes the liquid to vaporize and the vapor to move to the cold

end of the tube where it is condensed. The condensate is returned to the

evaporator by capillary forces. The amount of heat that can be transported

as the latent heat of vaporization is usually several orders of magnitude

larger than that which can be transported in a conventional convective heat

transfer system. Thus, a small heat pipe can transport a large amount of

heat.

The first recorded patent of a device similar to the heat pipe was by

Perkins and Buck (1892). It is called a Perkins tube which is actually a

wickless heat pipe. It relies on gravitational forces to return the liquid

from the condenser to the evaporator. In 1942, Gaugler applied a wick

structure to the Perkins tube and invented the heat pipe which can operate

at different orientations. However, it was not widely publicized until

1964 when Grover et al. at the Los Alamos Scientific Laboratory

independently reinvented the concept. Grover (1963) included a theoretical

3
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analysis and experimental results in his patent. The demonstration heat

pipe was made from a stainless steel pipe incorporating a wire Tesh wick

and sodium as the working fluid, although lithium and silver were also

mentioned as possible working fluids. Since then, the heat pipe has gained

ever increasing development and applications.

The performance of heat pipes is restricted by several limitations,

namely, (1) vapor flow limit: sonic and viscous limits; (2) liquid flow

limit: capillary, entrainment, and boiling limits. The sonic limit is

defined as when the vapor velocity is so high that it reaches the speed of

sound (1=1), thus affecting the overall heat pipe performance because of

poor temperature uniformity. The viscous limit usually occurs at low

working temperatures where the viscous forces are dominant in the vapor

flow. As described by Busse (1973), the maximum heat flux due to the

viscous limit occurs when the vapor pressure is reduced to zero (P=O). The

capillary limit is the wicking limitation whenever the capillary forces are

insufficient to overcome the vapor and liquid pressure losses (e.g., APc <

AP1 + APv, where AP c is the capillary pressure, and AP1 and APv are the

liquid and vapor pressure losses, respectively). The entrainment limit

represents an interaction between the countercurrent vapor and liquid that

leads to the entrainment of liquid droplets from the wick structure, which

leads to an insufficient amount of liquid returning to the evaporator which

limits the heat pipe operation. The boiling limit is a limitation of the

radial heat flux density. For a considerably high iadial heat flux at the
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evaporator, vapor bubbles may be formed in the evaporator wick. The

formation of vapor bubbles in the wick structure can cause hot spots and

obstruct the circulation of the liquid.

A common type of heat pipe which meets the growing needs in space

applications (e.g., transportation of energy in the reactor core of nuclear

power systems (Koening, 1985) and supersonic jet surface cooling

(Silverstein, 1971)) is a liquid metal heat pipe, which uses a liquid metal

for the working fluid such as sodium. The major concern for this type of

heat pipe is the sonic limit during the starting period of operation, i.e.,

at the lower working temperature range for a certain working fluid. This

is because the vapor has a low density and a high viscosity. In this case,

the compressibility of the vapor and the viscous dissipation may have a

significant effect on the performance of the heat pipe. Also, the high

vapor velocity and viscosity may cause a significant pressure drop which is

related to the temperature profile by the thermodynamic equilibrium at the

vapor-liquid interface, thus affecting the overall heat pipe performance.

The purpose of the present study is to determine the effects of conjugate

heat transfer and vapor compressibility for liquid metal heat pipes by

solving the complete conservation of mass, Navier-Stokes, and conservation

of energy equations by using a computer code called PHOENICS. The present

analysis includes the conjugate heat conduction through the wall and the

liquid-wick matrix, which is usually neglected but is very important for

heat pipes with multiple heat sources. The investigation is also extended

6



to lower temperature heat pipes such as those using water as the working

fluid.

Literature Review

Since 1964, many experimental, analytical, and numerical investigations

were made on heat pipes. The related work presented here is grouped into

the following three categories: (1) vapor dynamics, (2) coupled temperature

field and vapor dynamics, and (3) experimental studies. A brief

description of the previous theoretical and experimental work is also

summarized in Tables 1.1 and 1.2.

Vapor Dynamics

The prediction of the vapor pressure distribution in heat pipes was

first studied by Cotter (1965) for incompressible flow and the limiting

cases of Rer << 1 and Rer  >> 1. He concluded that for Rer << 1, the

viscous effects dominate, and the pressure gradient is the same as in a

Poiseuille flow while for Rer >> 1, the flow is dominated by inertial

effects. The pressure recovery in the condenser was 4/T2 of the pressure

drop at the evaporator.

Busse (1967) further analyzed the hydrodynamics of laminar

incompressible flow in long cylindrical heat pipes. An analytical approach

7



o0 > a 0 1t a .
0 06 2 41 . 041

C* 0.4 41 - C4 04 0a1 C-
C, 6 002 I. C

0 0. 4) 6 C400 00 U41 6 3
U0 .0 ).46 V -4 .~ 0 v- N0 (L0011 j 1. .

Ig 4,' Xc L.41- - 00.4 w0U 6- 0.40 1 0.
r .. 0 Z0 L .'.0L -, -.0 - 6 64 " U

U~ 6 041 - 'a~3 000 1 X-6. Z1- 0O Uj

- - C -060. 0 0...4 >. o U 0 (D 0 Q OO 0 .C ' 601-
> 0L~ .u ~ 0 0.000.04

Z. 0, 0. 0, 0. 0)u 02 . a . 0. a0

-C I c > zV m. 3 . - 4CL - V L 12 6u C C-

Q) 0 0 U 0 U UU

41 41 4 41 6)
a, a . a V VJ va

. 6 CL 6 6 6 6 u 0 6 6 .

0 .
L. 6i 6 .

.. 0

416 U1 r 6 U

0 ~ ~ U (6 4

V. >. 61 >, U6 . 41at4
a. 0 0.4 0. 04 0 0

0~~ W 4

6~~ 6 --U

0 0 0 a 0- 0 A
cc cc 0. Il caC

8 -



4) 4) 0 
1-.- 0

4)~o 6 ~ .00 .
l o c~OC -- c t-- 340 luo

-L. 0 4 ) t -0 c4 v. iL v~ CO

oc. o I0-.C Q. ) 0 c ~ 2 c13004 4) cm00 4. - - .o..

41. a 4. 3. .; 1- C,

C) - )0 U2 - x 10 C c -

o ) 0 0 0 - 43 =1 w.0 . r)0 0) - 1 - 0.
2.) .. )0 0 14 0. 00 3 4. 0 4 . . 0)

0 O L . 1. 9, O 4)0 0 .0 O1 . . ) .. 0 0 0 ID L* o ~
.5 0. 3. 3.l 00. or 'IV to 3. 3.

0 0 0a 00 0- 0C

3 2 S2 3 1 A 2 I2 32 32 3 23

00

u 'a0 1. 30 0. -ol 
w- CC0

0 0) al 3 0 0 IV ol 0

r . 4.C c
4) 

r) 0 
C4c

- 6 )- -0 - )4

cc >. 0-

6 0 .. o OO :0e- at-.-j
16 c 0. m0. .... 0. 60.1- . 0 t

0 0)

0 Lo

- 0 0 -0 0

++ 
+4

+1 1 *

III

N --N N N Nm N N 04

4*1- Xa- -- &C 30 Cc - 3- 0-...C)

I -- - 0

0

02 0 I- C

vo Uv

4) - ~ 32 1 -.9



.. 0 a. X 0 0
v. .U : ) .0 0 - -
11 6) 0 ~ Ci r 6U)) -~C

au V~ 0- r
3U 0 a0~ Wv0* 1 .00c 0ac0

70 6 - C- . a100 -
0 ~ ~ ~ A 4 0 v I J69 06L_

0,26.6 0 ) 1 a'.5) , .L': .0 0 -4) 0 c VI. .. 0
u.. v ) c 0- 0) ).- C.c. 6 .

6 a z 0. C- 6 33 .2 4 -0.4 .~ 0 Urn 6. a0
i. c) - a i C36-6 4)-0- CC0 0 .'. 3 0 0

* 6 C.0 .0 .U . CC -V. ) ) t'0 w a M
iuA 4 v6 0C). 'A0G 0 .1 60 . ~ '4 C 6.G) r0 6 4u

-U U. M. 1 4)4c'6 z0 4 :. 1- ) C0- 0.6 20. c.0)401

a- .. l s - 010 . ;o 2 0 6.. a~ I- a X

0*

6) .1 C1 6 )

w. .05 6 . 9 .r .~ V

C,-r C.-C4* C)

.6. 3. 6. 2. 6.

ci 4 41 v)6 ) )4

v -6 6A 6 6 U ) 6
-6 -m .fl U6 C -

6- 0. 1..i--. i-
U* OF~ t I I

Ut

.2. z z

+ + 6. + + 6

ci ci 2 c aI

+. +1+ ~ +!

C-4 N - -4

u 84

2c I c.

00 ~ ~ 4 0 2 C MCI.l C Ti3  , v
WO wo m3c0

M U-

-g - 10



o' > )

-. r. N 0

4,4 L ; 0 m. L.

00 C to 110

4) 4)- 4).

4,~~~ 6 . V 0 ,5 4) 0 

.4)60 0 B) r. 4) a li- 0 .-

z 150 .00 m4 1 C C

M ew
45~t 4514

0A 4, 01 j. a) L. 4,04,
>5.-t >5 05> 5> 5. 5>

0o.L

4, 0 w4 4

41 to 45. 0) 4a
c4 c 4, 66 04 0>

6 - 4,0 . 4 0.. 0 -s.
.40 s 4 5w * O.0 - u0 . l 40.

3m 6D 6 6 4
64)~ ~ 6V4 4 ~ 6 4 > s

0) 0
0 0 la

4)0 4) 4) 40 4) 0)

c, .0 4) c 4,. CLu ~
44) 0 . 40 ~ 0 4.) ~.

.C .04935 0 4) C ~ .0

0 N.0 .04 V6 , ) ,
4,4 5 6 l r.5 -%~

.4 0 .. 5 0.4, 6

c 3 co v. gj4 cc 0 0 co 'c c C c

.J 4) 4, a)4) ) 4) 4)4
00

bd C0 M



was used to solve the momentum and continuity equations. The heat pipe

under consideration had three distinct sections with constant mass

injection in the evaporator and extraction in the condenser. The length of

each section was assumed to be much larger than the diameter of the vapor

channel. To solve the momentum equation, the axial velocity profile was

approximated by a fourth-order polynomial with respect to the radius and a

correction function. He found that the normalized axial velocity component

is constant along the evaporator, approaches the Poiseuille profile in the

adiabatic section, and varies strongly along the condenser. The expression

for the pressure distributions along the evaporator, adiabatic, and

condenser sections were derived separately.

Bankston and Smith (1973) analyzed the incompressible two-dimensional

laminar vapor flow in a heat pipe. The solution was presented for the

pressure variation along the pipe for various evaporator and condenser

lengths at steady-state operation. The finite difference scheme was

employed to solve the momentum equation in terms of the stream function and

vorticity. In addition, a new series solution for the slow-motion case was

also obtained, and it confirms numerical results in the limit of low

Reynolds numbers. Various cases with different radial Reynolds number were

analyzed, and they concluded that flow reversal in the condenser may occur

when the condenser radial Reynolds number exceeds 2.

Kadaner and Rassadkin (1975) studied the laminar vapor flow along the

heat pipe. The problem was solved by using a parametric method which

introduces a velocity profile in terms of two unknown functions. The

integrated momentum equation was then solved in terms of these functions.
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The functions were determined by analyzing the limiting situation, and the

results were presented in a graphic manner for the determination of the

vapor pressure loss along the pipe. The dimensionless pressure drop and

friction coefficient were presented in terms of the radial Reynolds numbers

and the dimensionless axial distance.

Bystrov and likhailov (1982) also studied the laminar vapor flow in the

heat pipe condenser using the parametric method. The axial velocity

profile was approximated by a fourth-order polynob, ial with respect to the

radius and an unknown parameter which was later determined by the boundary

conditions. The results were presented for pressure and velocity

variations with the Reynolds number in the range of 1 to 30. The

comparison of the theoretical results with the experimental data by Quaile

and Levy (1972) showed a good agreement under the conditions studied.

Faghri (1986) solved the 2-D incompressible laminar vapor flow in the

concentric annular heat pipe. The parabolic Navier-Stokes equation plus

the continuity equation were solved by using the finite difference

numerical scheme. The pressure drops and velocity profiles were presented

for symmetric and asymmetric heating and cooling cases. He concluded that

for radial Reynolds numbers much less than 1, viscous effects dominate, and

the axial velocity profile throughout the heat pipe is close to the

Poiseuille flow conditions. For radial Reynolds numbers greater than 1,

the evaporation and condensation cases become qualitatively different.

Flow reversal was also noticed in the condenser section for high

condensation cooling rates. The observations obtained here for an annular

13



heat pipe are similar to what Busse (1967) concluded for a cylindrical heat

pipe.

Narayana (1986) studied the 2-D steady, incompressible laminar vapor

flow in a heat pipe. The continuity and Navier-Stokes equations with the

boundary layer assumptions were solved. The effect of frictional and

inertial pressure drops on the static pressure is compared for the values

of the wall Reynolds number in the range of 2 to -5.

Busse (1987a) presented a logical criterion for axisymmetric internal

flows which indicates whether or not a given velocity profile tends to

develop into a separation profile. He found that the reversal of the

profile depends on the profile shape and the lach number. The extraction

of mass usually leads to a much stronger profile variation than injection.

The viscous forces and mass injection tend to establish an equilibrium

profile while mass extraction is an inherently unstable process which

promotes a run-away from the equilibrium condition. It is still not

certain, however, whether viscous forces can also cause a flow reversal.

Busse (1987b) studied laminar subsonic flow in cylindrical heat pipes.

The vapor was modeled as a 2-D isothermal perfect gas with a constant heat

of vaporization. The approach involves the use of the boundary layer

approximation and a noncontinuous power series to describe the velocity

profile. Based on the analytical method, the numerical results for the

pressure recovery in the condenser were compared to experimental

measurements. He found that significant flow reversal at the condenser

wall first appears at -6.0 > Rer,c -10.0 giving rise to pressure recovery
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in the condenser. Also confirmed, is that the onset of turbulence is at

Icr,c -6 at axia! Reynolds numbers of cnly a few hundred. This

phenomenon coincides with the appearance of significant reversal flow. The

restriction for the boundary layer approximation is that L c/D should not be

too small. The results presented in this report give a fairly good

comparison with experimental measurements with Lc/D = 4.4. This work is an

extension of the work by Busse and Prenger (1984) using a similar model,

but the more recent analysis emphasizes identifying the influence of

transition to turbulence on the condenser pressure recovery.

Recently, Bowman and Hitchcock (1988) modeled the unsteady vapor flow

in a heat pipe. The vapor was assumed to be compressible, viscous and

changing from laminar to turbulent. The Navier-Stokes equations were

solved numerically using the lacCormack explicit finite difference method.

Both transient and steady-state results were obtained. The experimental

data for the pressure variation was obtained by using a porous pipe with

air blowing along half of the pipe wall and suction along the other half of

the pipe which simulates the heat pipe vapor flow. The pressure variation

of both subsonic and supersonic vapor flow was measured and compared with

the numerical results and a fairly good agreement was found. The

experiment also demonstrated that the vapor flow in the heat pipe can be

accurately modeled using the steady-state governing equations because the

time period of the vapor transient is very short when compared to the heat

pipe wall and wick transients.

Faghri and Parvani (1988) further analyzed the gas dynamics of annular

heat pipes. The vapor was modeled as laminar incompressible flow. The
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elliptic and partially parabolic Navier-Stokes equations were solved

numerically and compared for the pressure dr p and velocity profile along

the pipe. For the cases presented, only a small deviation was found

between these two solutions. Flow reversal was also noticed at high radial

Reynolds numbers in the condenser and long condenser lengths. Based on the

observation of a very short hydrodynamic entry length for the evaporator

section, a similarity solution was also proposed for the prediction of the

pressure drop and velocity profile for both conventional and annular heat

pipes.

The investigators mentioned above only studied the vapor gas-dynamics

by solving the mass and momentum conservation equations. The analyses with

the coupling of the energy equati will be presented below.

Coupled Temperature Field and Vapor Dynamics

Levy (1968) analyzed the one-dimensional compressible vapor flow in the

evaporator section of a heat pipe. He assumed a uniform temperature

distribution and averaged the vapor velocity along tne radial direction.

The analysis was started from the mass, momentum and energy differential

equations incorporating the Clausius-Clapeyron equation, the two-phase

equilibrium relations and the Clapeyron-Iendeleev equation (Vsat T) for
Fat

the specific volume of the saturated vapor. The vapor quality, velocity,

and pressure differential equations were obtained with respect to the axial

distance. These equations were integrated by using the Runge-Kutta method,

and the results under the choking condition were presented for sodium heat

pipes. Comparing the theoretical calculations with existing data suggests

16



that at sufficiently low vapor pressures, it is the choking phenomenon of

the vapor flow rather than the capillary limit of the wick which will limit

the maximum heat flux of the device. Bystrov and Popov (1976) performed a

similar analysis by including the effect of friction along the pipe.

Rohani and Tien (1973) studied the heat and mass transfer in the

vapor-gas region of a gas-loaded heat pipe. The elliptic governing

equations were solved in conjunction with the overall energy and mass

conservation balances and the thermodynamic equilibrium condition for three

cases with different working fluids. They found that in liquid metal

gas-loaded heat pipes, the vapor-gas two-dimensional diffusion must be

considered in the analysis. A simple numerical framework to include the

axial conduction in the wall and liquid-wick matrix was also proposed in

that paper but no results were presented.

In 1974, Tien and Rohani solved th e2-D elliptic coupled momentum and

energy equations with the thermodynamic equilibrium relation at the

interface for the heat pipe vapor flow. The model was laminar,

compressible and steady state with sodium as the working fluid. They used

a vorticity-stream-function approach similar to the incompressible flow

model used by Bankston and Smith (1973). For the boundary conditions, they

specified that the evaporator and condenser are surrounded by corstant but

different ambient temperatures and have uniform overall heat transfer

coefficients between the vapor-liquid interface and the ambient. The

pressure and temperature variations were presented in terms of five

different radial Reynolds numbers: lRe I = 2, 4, 8, 24, 36 or JRe I

1.33, 2.66, 5.33, 16.0, 24.0. A large deviation was found for the elliptic
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and parabolic pressure drop results at high radial Reynolds numbers. No

comparison was made with experimental data.

Bianchi (1987) performed a similar analysis by using the finite element

method, but he modeled the vapor flow as 2-D and incompressible with water

as the working fluid for the presentation of the results. No pressure

recovery in the condenser was observed for the cases presented.

Ismail et al. (1987) investigated the vapor and liquid flows inside the

heat pipe. The finite difference method was used to solve this problem.

The liquid and vapor were both assumed to be 2-D laminar and

incompressible. The thermodynamic equilibrium relation linked the

temperature and pressure at the liquid-vapor interface. The liquid flow in

the porous medium is assumed to be one phase and covers the whole wick

matrix, so the liquid flow was treated like pipe flow in a porous annulus

with blowing and suction at the boundary. The overall pressure effect was

considered rather than considering the pressure difference at each

meniscus. Flow reversal of the vapor was observed in the evaporator,

adiabatic and condenser regions, which usually only happens in the

condenser region.

Colwell et al. (1987) modeled a liquid metal heat pipe start-up from

frozen state. The heat pipe under consideration was rectangular in

geometry. The finite element method was used to solve the transient

two-dimensional solid wall and frozen liquid regions. A one-dimensional

analytical approach similar to that of Levy (1968) was employed to solve

the steady-state vapor flow. The transient temperature variation along the
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liquid-vapor interface was presented at different time intervals. The

results vhowed that it would take about 150 seconds for a heat pipe to get

to the normal operation state from the frozen state. Since the 1-D

analytical solution for vapor flow is easy to use and gives quitp accurate

results, it was a good approach to combine this method together with the

2-D unsteady solution of the wall-liquid regions. This is because the

approaches for the 1-D vapor and 2-D solid regions are well established,

and therefore a converged solution is ensured.

A transient heat pipe model with the wall, liquid-wick and vapor

regions was proposed by Seo and El-Genk (1988). This model solves the

quasi-steady-state, one-dimensional mass, momentum and energy conservation

equations in the vapor region and a two-dimensional transient model is used

in the wall and liquid-wick regions. This model assumes a compressible

laminar vapor flow and an incompressible liquid flow in the porous medium

with the capillary relationship as a link between the two fluids, but the

effect of porosity in the liquid-wick region was neglected. Furthermore,

the energy due to mass injection and suction to and from the vapor region

was not considered. The thermophysical properties were assumed to be

temperature dependent for both the liquid and vapor. The solution gives

the temperature, pressure, and velocity distributi ns in the heat pipe, as

well as the predictions of the heat pipe operational limits during both

steady and transient operations. The numerical predictions of the

temperatures of a lithium heat pipe with a radiative boundary condition in

the condenser were in good agreement with experimental data.
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Issacci et al. (1988) studied the transient behavior of the vapor flow

in a rectangular heat pipe. The time dependent viscous compressible

elliptic 2-D continuity, momentum and energy conservation equations were

solved numerically. The ideal gas law is used to model the compressibility

of the vapor and the pressure and temperature are linked by thermodynamic

equilibrium at the interface. The "SIMPLE" numerical scheme developed by

Patankar (1980) was used for the computations. Flow reversal was detected

in the condenser and adiabatic regions with water as working fluid, but no

comparison was made with experimental data.

Faghri (1988) extended the solution derived by Levy (1968) to annular

heat pipes by using a similar approach. The annular heat pipe under

consideration has two concentric pipes of unequal diameters attached by end

caps which create an annular vapor space between the two pipes. The heat

input and cooling were supplied to both the inner and outer walls. Similar

results as obtained by Levy (1968) and Bystrov and Popov (1976) were

obtained for the pressure and temperature variation along the pipe at the

sonic limit. It was confirmed that the friction along the pipe will

accelerate the vapor flow and make the sonic limit occur at a smaller heat

input. A simple equation was also proposed for the prediction of the sonic

limit of the annular heat pipe. In addition, the two-dimensional

numerical parabolic and elliptic solutions were also obtained for the

pressure drop along the pipe. Based on the observation that the vapor flow

becomes fully developed in a very short distance from the evaporator end

cap, three analytical similarity expressions were obtained for the pressure

drop in the three different sections of conventional and annular heat

pipes.
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Experimental Studies

i number of experiments have been performed both on actual and

simulated heat pipes and are summarized in Table 1.2. The experimental

data on the actual heat pipes are usually obtained for the vapor or wall

temperature variations along the heat pipe. The pressure profile along the

pipe, which is usually difficult to obtain for actual heat pipes, is

measured by using simulated heat pipes.

Kemme (1969), Ivanovskii et al. (1982) and Kerrigan et al. (1986)

investigated the performance of liquid metal heat pipes. Kemme's

experiment was focused on the situation when a sodium heat pipe is working

close to the sonic limit (M = 1). Ivanovskii et al. studied the sodium

heat pipe performance at different working temperatures by measuring the

vapor saturation temperature. For space applications, Kerrigan et al.

(1986) performed an experiment on the transient performance of the lithium

heat pipe with radiation cooling at the condenser.

For low temperature heat pipes, Ponnappan and Mahefkey (1984), Bianchi

(1987), Gernert (1986) and Faghri and Thomas (1988) used water as the

working fluid. Ponnappan and Nahefkey (1984) studied a heat pipe with a

double-wall artery wick structure while Bianchi (1987) studied a

conventional heat pipe with a screen mesh wick. Gernert's experiment on

the heat pipe with multiple heat sources found a very small difference in

temperature for the wall and vapor temperatures along the heat pipe.

Faghri and Thomas (1988) performed an experiment on an annular heat pipe

which has axial grooves on the inner and outer pipe walls for the capillary
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wick. The purpose was to measure the capillary limit and compare the

results with a conventional heat pipe with the same outer dimensions.

The most widely referenced experiment on a simulated heat pipe is that

done by Quaile and Levy (1972). The experiment simulated the vapor flow

in a heat pipe condenser. The tube was closed at the downstream end and

the fluid was removed uniformly by suction through the porous wall. They

measured the axial pressure drop in a porous pipe as well as the radial

variations of the axial velocity at several axial locations. The pressure

recovery phenomenon was observed in that experiment. The experimental data

from the pressure profile showed a very good agreement with the theoretical

solution by Veissberg (1959) and Busse (1967) in the range 2.21 < Rer <

5.0. Recently, Bowman and Hitchcock (1988) simulated a whole heat pipe by

employing air flow with injection and extraction in a porous pipe. The

results were given for the pressure and velocity variations while the flow

changed from laminar to turbulent.
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1.3. Mathematical Formulation

The heat pipe model under consideration (Fig. 1.1), has three distinct

regions in the radial direction (wall, liquid-wick and vapor) as well as

three different types of sections in the axial direction (evaporator,

adiabatic and condenser). This model solves the two-dimensional

conservation of mass, momentum and energy equations for the heat pipe with

single and multiple heat sources under the following assumptions:

a. The compressible vapor flow is laminar and steady.

b. The heat transfer through the liquid-wick is modeled as pure

conduction with an effective thermal conductivity.

c. The properties of the vapor, the liquid and the solid in each

region are constant with the vapor density following the perfect

gas law.

d. Both evaporation and condensation are considered to occur at the

inner radius of the porous medium.

e. At the vapor-liquid interface, the vapor is at its thermodynamic

equilibrium temperature corresponding to the local saturation

vapor ressure.

f. At the liquid-vapor and wall-liquid interfaces, the harmonic mean

of the thermal conductivity is used for the energy equation.

g. The flow is axisymmetric.
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1.3.1. Vapor Region:

The conservation of mass and momentum equations given by Bird et al.

(1960) and the energy equation given by Bejian (1984) after some

simplification are as follows:*

mass:

(Pvwv) + (~pvrvvJ

r- component momentum:

OV d v V v + 1 dV + {iV}

(1.2)

z- component momentum:

8w -Fr dF v [a (rj) 1 r

9 .Fz (~ ry (rvv)) +4(13

energy conservation:

Pvcp (VOV ~+ W8v) = kv [ (r OT ) +{--} a +V v OwV~
dz

+ a VO(1.4)
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where:

a v 2 v 2 aw 2 1 Vv + w 2 2
! 0 Wv() + (VX) + (-F+ -3 V)

V ,V :-rJr- (rv, - z

The viscous dissipation, 0, is included in the present analysis. Ve

should mention here that in equations (1.2-1.4), the terms in braces {} are

associated with axial diffusion terms. These terms are neglected when the

partially parabolic version is considered but are included in the elliptic

version.

Compressibility of Vapor:

The perfect gas law is employed to account for the compressibility of

the vapor. The vapor density is obtained from the following equation:

P
v (1.5a)Pv = M[T
v

where R is the gas constant.

Since

Pv RT
Pv v

and

7P 
v-- = RT

Pv v

we have
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7P v c2

Pv

where c is the velocity of sound and 7 is the ratio of specific heats.

Usually the velocity of sound changes very little under the normal working

conditions of a heat pipe, so we can write the derivative of the above

equation in the following form:

11(1.5b1

v v v

Equation (1.5b) is used in the density correction formula p=p*+p',

where p' is the density correction and is equal to P', P' is the pressure

correction, p* is the guessed density and is obtained from p of the

previous iteration. As long as a converged solution can be obtained, P'

approaches zero, therefore the approximate p' equation (i.e., Eq. (1.5b))

is sufficient.

1.3.2 Wall and Liquid-Vick Regions

In these regions, only heat conduction is considered and the energy

conservation equation is as follows:

1 a[kT a kU
rk + kkiJ = 0 (1.6)

where the thermal conductivity k of the wall is different from that of the

liquid-wick structure.

The equation for the effective thermal conductivity proposed by Chi

(1976) is used here for the liquid saturated screen wicks, and is as
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follows:

keff =kl k1 + ks - (1-c)(kl-ks)] (1.7)ef f  k, + ks + (1- )(kl-k s )

In the above equation, the c is the wick porosity and is given by Chang

(1987):

1 rABE = 1 - --

where A d/w and B = d/t. The wire diameter is d, the screen thickness is

t, and the opening width of the screen is w. The liquid and solid wick

thermal conductivities are k1 and ks, respectively.

For the sintered powder wick, the following equation proposed by Dunn

and Reay (1982) is used to calculate the effective thermal conductivity.

2 + l/ks- 2f(l-kl/kS) 1
keff = k s 2 + kl/ks-+ 2(1-kl/ks) (1.8)

For the concentric annulus wick, the effective thermal conductivity is

obtained from the following equation proposed by Dunn and Reay (1982).

keff = k 1
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1.3.3. The Boundary Conditions

At either end of the heat pipe (z = 0, z = L), the radial and axial

velocities and the axial temperature gradient are zero.

On
w = v = r 0 (1.9)

The pressure is fixed to zero at the end cap of the evaporator at the

liquid-vapor interface for the elliptic solution and the datum pressure,

POI is added to get the absolute value.

The uniform heat flux boundary condition is specified at the outer pipe

wall surface (r = R ) of the evaporator and condenser sections. For the

evaporator section (0 < z < Le) or each of the evaporator sections in the

case of multiple heat sources, the constant heat flux boundary condition is

as follows:

-w - = qo, e

For the adiabatic section (Le < z < Le + La) at the outer pipe wall

surface (r = R.), we have

8-W
W = 0

and for the condenser section (Le + La ( z < L,), the constant heat flux

boundary condition is:
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OTw A e
-kw T = qo,e T7

C

At the wall and liquid-wick interface (r = Rv + 6), the temperature

and hcat flux at both sides of the interface should be the same.

T Tw  (1.11)
rw  grlw

k wT w k 071
w -: keff -F

The symmetry boundary conditions are applied along centerline of the

pipe (r=O):

aw 01V g
= vv o (1.12)

Along the liquid-vapor interface (r = R ), the following boundary

conditions are specified: no slip boundary condition thermodynamic

equilibrium, energy balance heat source, and blowing and suction

velocities.

For the no slip boundary condition at the liquid-vapor interface

wv = 0 (1.13)

For thermodynamic equilibrium, the Clapeyron equation is used in the

following form:

dPv  dTv hf
F-- = -- -P

V
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or it can be integrated in terms of T0 and PO, which results in

v 1 F (1.14)1 Rln v

The above equation is used to determine the vapor temperature at the

vapor-liquid interface.

Eaking an energy balance at the interface results in

kT vlw -1.15)
qi = hfg v- keff-(11r-

or

k 0 v k l Wv k Fr - keff--TL- (1.16)

in= hfg

and

{ vi > 0 Suction (condensatiun)
v P v v i < 0 Blowing (evaporation) (1.17)

A summary of the boundary conditions are also listed in Table 1.3.
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Table 1.3 Boundary Conditions for Beat Pipe Analysis

evaporator adiabatic condenser
(o < z < Le) (Le < z < Le + La) (Le + La  z < L)

outer pipe k T = -w A oVe

wall -- qo,e N-- 0 = i,
(r = IV)

wall and
liquid-wick 8Tw  8Tlw
interface T TH

(r = IV + 61) Tw F keff

liqo = 0 vi = qi Thf g =kv- 1- k ef f--Eliquid-vapor ' Pv ' ef*

interface
(r = IV)

1 R in vP

centerline of 8w
the pipe V v(r = o) Tr : v -Tr

lboth ends of
OTo

the pipe w = V = T = 0

(z = 0, L)
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1.3.4. The Dimensionless Variables

The solution for the parametric study will be presented for the

following dimensionless dependent variables:

+ w P+ 2(P -PO) T+  T + qi

w z  POWa qm

where pO is obtained at To and PO. The mean heat flux at the liquid-vapor

interface without considering the axial heat conduction in the wall and

liquid-wick regiuito is qm' which is specified as follows:

at the evaporator and adiabatic sections,

and at the condenser section,

qmIc = qo,c[R ]

where qo,e and qo'c are the heat fluxes specified at the outer pipe wall of

the evaporator and condenser sections. The heat flux across the

liquid-vapor interface, qi, is calculated from equation (1.15).

These results are presented in terms of the dimensionless independent

variables and parameters as follows:
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Ki k keff+ Z + r kw kffz = ,r : ~,Kwl:e~ Klv-

v eff v

w iPovoRv
A w A 8v1 Rer v' or
w N1' 1 F r

V V

Re = Re = QR
r,e Avhfge r,c Avhfg-c

The dimensionless parameters proposed here are based on the conjugate

heat transfer analysis of flow in a pipe (Section II) and the annular heat

pipe analysis by Faghri and Parvani (1988).
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1.4 Solution Procedure

The heat pipe problem is solved as a convection-conduction problem

throughout the entire domain by solving one generalized energy equation

with different thermal diffusion coefficients. The velocity in the solid

wall and the liquid-wick matrix is specified to be zero so that the

analysis in these two regions becomes purely a conduction problem. Since

the liquid velocity in the porous medium is much slower compared to the

vapor flow, the zero vapor velocity boundary condition at the liquid-vapor

interface and neglecting the convective term in the energy equation of the

liquid-wick region should not cause a large accuracy problem. The validity

of the results will be checked with experimental data.

The generalized PHOENICS computer code is used in the present analysis,

which employs the finite-difference iterative method of solution developed

by Spalding et al (1980). The elliptic solutions of the mass, momentum

and energy conservation equations with boundary conditions given in

equations (1.9-1.17) were obtained. The partially parabolic solution was

also obtained by neglecting the axial diffusion terms in the momentum and

energy equations. The solution procedure is based on a line-by-line

iteration method in the axial direction and the Jacobi point-by-point

procedure in the radial direction. The "SINPLEST" method is employed for

the momentum equations, in which the finite-domain coefficients contain

only diffusion contributions, and where the convection terms are added to

the linearised source term of the equations.

The pressure field is solved by the whole-field pressure correction
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algorithm derived by Earkatos et al. (1982). The pressure correction

equation is deduced from the finite-domain form of the continuity equation,

which assumes that the flow coming into the system is due to the pressure

difference. The pressure field is first assumed and then the velocities

and temperatures are solved. This step is repeated line-by-line to the

completion of a sweep. The pressure correction equation is then solved

using the mass errors that have been calculated during the sweep and other

variables are updated accordingly. A new sweep will start until

convergence is attained. In this numerical scheme, once the velocity

boundary condition is specified no pressure boundary condition is needed.

For compressible vapor flow, the mass and momentum equations are coupled

with the energy equation by the perfect gas law. These four equations are

solved sequentially by iteration.

Since there is a change of phase at the liquid-vapor interface, the

energy equation is no longer continuous due to the latent heat of

evaporation or condensation. To make an energy balance, we can include thc

term i hfg as a heat sink at the liquid-vapor interface in the evaporator

and as a heat source at the interface in the condenser section. Therefore,

the sign of qi in the evaporator should be negative and positive in the

condenser.

The governing equation of the vapor flow is first solved by assuming

that the heat flux is uniform at the liquid-vapor interface based on the

total heat input at the outer wall. The rate of evaporation, condensation

and the velocity are then calculated by i = qi/hfg and vi = M/l'p" These

values are used in the vapor mass and momentum conservation equations.
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Once the converging solution is obtained after a few iterations, a new qi

is calculated through equation (1.15) and used for further iterations. At

the same time, the thermodynamic equilibrium is checked and corrected

during each iteration. The iteration will continue until fully converged

results are obtained. The pressure at the liquid-vapor interface at the

end of the evaporator, PO is taken as the datum pressure and does not

change. The corresponding saturation temperature T0 is assumed to be the

initial temperature for the whole calculation domain.

The accuracy of the numerical solution is checked with experimental

data and the convergence is assured in two ways:

1) The sum of the absolute value of the residuals should decrease as the

sweep number increases.

2) The spot value should approach a constant value as the sweep number

increases.

For each grid point, a residual is defined as the error that occurs

when the current values of the dependent variables are inserted into the

discretization equation. The error is due to the fact that the current

values of the dependent variables do not satisfy the discretization

equation exactly. The number of sweeps changes from 150 to 350 based on

each different case. The spot value was used to monitor the change of each

variable with the increase of the sweep number at one particular location

in the domain. The location of the spot value was chosen in the vapor

region of the condenser section next to the adiabatic section.
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As a common approach, a course grid size is first chosen to test the

program, and a fine grid spacing is employed for the final solution. A

uniform grid size is used for the axial direction, and three different

uniform grid sizes are used for the vapor, liquid-wick, and wall regions.

For the numerical results presented for the parametric study, the grid

sizes for the cases presented are chosen as follows:

30 x 20 x 10 x 10 = (axial) x (radial vapor) x (radial liquid-wick) x

(radial solid wall).
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1.5 Model Verification Versus Experimental Data

To verify the numerical predictions, the results are compared to four

cases of existing experimental data reported by several investigators as

listed in Table 1.4. The related experimental specifications and

properties for the numerical computations are also listed in Tables 1.4 and

1.5, respectively.

The numerical model was first compared to the experimental data

reported by Ivanovskii et al. (1982) for a cylindrical sodium heat pipe

(Case 1). The heat pipe was provided with a compound wick of the type with

a ring-shaped gap for the flow of liquid. The effective thermal

conductivity for the computation is chosen to be equal to the liquid

thermal conductivity proposed by Dunn and Reay (1982). The method of

measuring the temperature distribution was to place a movable

micro-thermocouple directly in the vapor channel. The thermocouple was

provided with a special capillary device to keep it wetted by the

condensate, so the temperature readings correspond to the saturation

temperature which matches the numerical model at the interface. For the

numerical computation, the constant heat flux with a total heat input of

560 V is specified at the outer wall of the evaporator. The pipe wall is

assumed to be made of stainless steel and has a thickness of b = 1 mm. Atw

the condenser, a constant heat flux based on the total heat input at the

outer wall of the evaporator section is also specified. Fig. 1.2 compares

the numerical results and the experimental data for the vapor saturation
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TABLE 1.4 Experimental Heat Pipe Specifications

Case No. 1 2 3 4

References Ivanovskii Ivanovskii Kemme Gernert

et al. (1982) et al. (1982) (1969) (1986)

Working Sodium Sodium Sodium Water
Fluid

Le(m) 0.1 0.1 0.143 0.1, 0.1

La(m) 0.05 0.05 0.06 0.4, 0.3

Lc(m) 0.35 0.55 1.08 0.6

Vapor Channel 7.0 7.0 5.7 11.0
Radius (mm)

Wick Te Ring-Shaped Ring-Shaped Screen Mesh Sintered
i Gap(screen mesh) Gap(screen mesh) Powder

Mesh Number not reported not reported 400 325
(per in2)

Wick Thickness 0.5 0.5 0.15 0.76
(61,mm)

Wall Stainless Stainless Stainless Copper
Material Steel(assumed) Steel(assumed) Steel

Wall Thickness 1.0 1.0 0.9 1.6
(bw'mm) (assumed) (assumed)

Total Heat

Input (Q,W) 560 1000 6400 200 800
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TABLE 1.5 Experimental Beat Pipe Properties

Case No. 1 2 3 4
Properties

T0(OC) 545 583 692 94

P0(N/rn2) 1300 2476 12,A60 85,710

h fgx10 6 (J/kg) 4.22 4.182 4.08 2.27

pvx10 2kg/rn 3) 0.461 0.843 3.857 51.06

#vx10 7N s/r2) 194.9 191.43 192.89 121.42

c PV(J/kg-K) 2583.0 2648.0 2710.0 2010.1

ks(W/rn-K) 19.0 19.0 19.0 394.0

k1 (V/n- K) 66.18 66.18 59.54 0.682

k eff (V/rn-K) 66.18 66.18 45.45 240.2

kv(V/n-K) 0.0352 0.0353 0.044 0.0244

f 0.33 0.33 0.74 0.30

grid number

(radial xaxial) 35 x50 35 x70 35 x50 40 x60
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temperature along the heat pipe for Case 1. These particular experimental

data were chosen for comparison because they were more readable than other

data presented by Ivanovskii et al. (1982). As the results show, the

preseat compressible elliptic and partially parabolic models give accurate

predictions of the temperature profile compared to the experimental data

with a maximum deviation of 30C. According to Ivanovskii et al. (1982),

the experimental data for the heat transfer rate were measured with an

accuracy of 6 to 10%, so the deviations of the present compressible models

are within the range of experimental accuracy. For the incompressible

model, however, there is a maximum deviation of about 60C at the inlet of

the condenser section. Therefore, we need to include the effect of the

compressibility of the vapor in the analysis.

Figure 1.3 shows the variation of the pressure drop distribution along

the liquid-vapor interface for Case 1. The pressure drop reaches its

maximum value at the exit of the adiabatic section and then recovers about

55% in the condenser. Since the Clapeyron equation is the link between the

temperature and the pressure at the liquid-vapor interface, the pressure

profile is similar to the temperature distribution. The trend of the

pressure profile also agrees with the existing numerical results obtained

by Tien and Rohani (1974).
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Fig. 1.4 shows the variation of the Mach number along the centerline of

the pipe with a maximum value of 0.6 at the inlet of the condenser for the

compressible elliptic model. The trend is generally in agreement with the

results obtained by Levy (1968) for a cylindrical heat pipe and Faghri

(1988) for an annular heat pipe with a 1-D compressible model.

Figures (1.5-1.7) shows the numerical results for the axial

temperature, pressure and Mach number variations, respectively, which

correspond to Case 2 of the experimental data by Ivanovskii (1982). For

this case, the heat input was Q=1000 W and other geometric parameters are

indicated in Table 1.4. Since the thickness of the wall and the type of

materials were not mentioned in the reference, numerical calculations were

made with two different thermal conductivities and thicknesses for the pipe

wall which are believed to be commonly used by heat pipe manufacturers.

The results showed that the effect of axial conduction inside the wall and

liquid-wick is not important in this range, so only the results for the

thermal conductivity and wall thickness reported in Tables 1.4 and 1.5 are

given. The results of the compressible and incompressible models for the

vapor flow are presented versus the experimental data for the interface

temperature in Fig. 1.5. It shows that both models give a very good

prediction in the evaporator region, but the incompressible model

overpredicts the data in the adiabatic and condenser regions while the

compressible model underpredicts the data in the start of the condenser

region and overpredicts it near the end. In general, the compressible

model gives a better prediction. Fig. 1.6 shows the pressure variation

along the heat pipe for the compressible and incompressible models for Case

2. The incompressible model gives a maximum deviation of about 18%
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compared to the compressible model. Fig. 1.7 presents the Mach number

variation obtained from the compressible model with the maximum Mach number

of 0.54.

Figures 1.8 and 1.9 show the numerical results for the axial

temperature and Mach number variations, respectively, which correspond to

Case 3 of the experimental data by Kemme (1969). The heat pipe was about

1.3 m long and 5.7 mm I.D. with a screen wrap type wick of thickness b1 =

0.15 mm and stainless steel wall of thickness 6 = 0.9 mm. Heat was addedw

to the evaporator section of the heat pipe with an induction coil while the

heat was removed from the condenser section by conduction through a gas gap

to a water calorimeter. The effective thermal conductivity of the wick is

calculated from Eq. (1.7). For this case, three different sets of

experimental data of the outer wall temperature were obtained for subsonic,

sonic and supersonic vapor flow in the sodium heat pipe. During the

experiment, the heat input was fixed to 6.4 kV and the working temperature

was decreased by changing the cooling condition so the choking condition

could be reached.

For the present numerical analysis, the temperature at the end cap of

the evaporator is fixed to the experimental value of 6920C, and one

steady-state solution is obtained with a Mach number of 1.0 at the exit of

the adiabatic section as shown in Fig. 1.9 for the compressible model. The

maximum Mach number of 1.09 was found in the inlet region of the condenser.

Fig. 1.8 presents the experimental data of the wall temperature and the

numerical solutions of the compressible and incompressible models. The

present results of both models are in general agreement with Kemme's data
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for the sonic limit case except that the condenser wall temperature is

higher than the experimental data. This is probably because the condenser

cooling may affect the accuracy of the thermocouple reading and makes the

reading lower than the actual value. However, according to the comparison

it seems that the present model can still predict the general trend of the

heat pipe performance even if the Mach number of the vapor flow is high.

To further check the validity of the present numerical analysis, the

code was also modified to predict the performance of the water heat pipe

with multiple heat sources. The results were compared with the

experimental data obtained by Gernert (1986). The experimental heat pipe

under consideration had two evaporators and one condenser as illustrated in

Fig. 1.10. The heat was provided at the evaporator by two electric heater

blocks. The condenser section was fitted with a water cooled jacket. The

heat pipe had a sintered powder wick and the effective thermal conductivity

was calculated from the equation [Eq.(1.8)] proposed by Dunn and Reay

(1982). A multipoint thermocouple was installed along the centerline of

the vapor space to measure the variations of the vapor temperature. To

measure the outer wall temperature, the outer wall of the evaporator and

condenser sections were grooved, and thermocouples were soldered in the

grooves to the pipe wall. According to the experimental conditions, two

constant heat fluxes with heat inputs of 200 V and 800 V were specified at

the two evaporator sections. For the condenser section, a constant heat

flux based on the total heat input is also specified as a boundary

condition for the numerical computation.
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Figure 1.10 shows the numerical results and the experimental data for

the outer wall and the vapor temperature of the water heat pipe with

multiple heat sources for Case 4. The present model gives a very uniform

vapor temperature and a very small outer wall temperature variation. The

measured vapor temperature is also fairly uniform with less than a 10C

temperature difference along the pipe. The use of copper as the wall and

wick materials and the sintered powder wick give a very good thermal

conductivity, thus the radial tempc.ature drop is very small through the

wall and licuid-wick.

For the outer wall temperature, two experimental data points found in

the adiabatic section and one in the 800 V evaporator are fairly close to

the numerical solutions, but the temperature readings in the condenser

section are almost 60C below the present predictions. Since the length of

the condenser is much longer than that of the total length of the

evaporator, the heat flux through the pipe wall of the condenser is smaller

than that in the evapc.ator, which means that the heat flux through the

pipe wall of the condenser is smaller than that in the evaporator with 800

V. Thus, it is expected to have a smaller temperature gradient through the

pipe wall in the condenser section. It seems the measurements were not

very accurate in the condenser section probably due to the influence of the

cooling water on the thermocouple readings which resulted in the readings

being lower than what is expected. Usually it is very difficult to measure

the condenser and evaporator wall temperature because the cooling water may

54



lower the actual measurement while the heating may cause higner temperature

readings. Furthermore, the accuracy of the thermocouple reading may also

cause problems when the readings differ by only 1 or 20C.

Figure 1.11 shows the pressure variation along the vapor-liquid

interface of the water heat pipe for Case 4. A very small pressure drop is

noticed along the 200 V evaporator and the adjacent adiabatic section, but

in the 800 V evaporator, the additional amount of heat flux causes more

liquid to be evaporated into the vapor cL.annel thus leading to a

significant pressure drop along this section. In the condenser section,

about 80% of the pressure drop is recovered. As the results show, the

total pressure drop is very small which means that a very uniform vapor

temperature profile can be obtained. The uniform temperature profile is a

result of the thermodynamic equilibrium betwecn the pressure and

temperature at the liquid-vapor interface coupled with the fact that water

has a high static vapor pressure and vapor density under normal working

conditions. The phenomenon observed here is in general agreement with what

is observed for a heat pipe with one evaporator section. We believe that

the present model can predict the general performance of heat pipes with

multiple heat sources and will also provide a guideline for future

experiments in this respect.
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Based on the comDarisons of the present solutions with the experimental

data, we believe that the present model can accurately predict heat pipe

performance.
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1.6 Parametric Analysis

The heat pipe under consideration for analysis in this section has an

evaporator, adiabatic and condenser section each with a corresponding

length of : Le = 0.2 m, La = 0.1 m, Lc = 0.3 m. The dimensions of the pipe

are vapor core radius Rv 8.6 mm, wall thickness 6w = 2 mm, liquid-wick

thickness 61 = 1.44 mm, total length L = 0.6 m. The wall and wick

materials are assumed to be stainless steel with the screen wrap wick of

porosity e = 0.7. The cases presented in this section are listed in Table

1.6, and the corresponding properties are listed in Table 1.7. The

properties are obtained at temperature To and are assumed to be constant

along the pipe. Since the radial Reynolds number along vapor-liquid

interface changes, the average radial Reynolds numbers are calculated based

on the total heat input at the outer wall of the heat pipe for the purpose

of comparison, which are reported in Table 1.6. The heat input in the

evaporator is chosen so that the Mach number has a wide range for the

sodium heat pipe, and the total heat input is smaller than the heat pipe

limits.
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Table 1.6 Case Specifications for Parametric Anaiysis

Working2
Case no. Fluid Re a Re re Re rc Q(W) T0(0C) P0(N/M)

A sodium 186 -2 1.33 213.4 535 1023

B sodium 372.1 -4 2.67 426.7 535 1023

C sodium 558.1 -6 4.0 640.2 535 1023

D water 4419.0 -50 33.3 1647 100 101300

Table 1.7 Properties for Parametric Analysis

1. Sodium Heat Pipe (at T 0 =535 0C)

h fg Xl06  PvX02 A 1 7 c P k s k1  k vx102

(J/kg) (kg/rn) (N-s/m 2 (3/kg-K) (H/rn-K) (H/in-K) (H/rn-K)

4.237 3.713 207.5 2555 17.4 59.5 3.53

2. Water Heat Pipe (at T 0 ::100 0C)

h fg X10 6  P vX1O 2 vX10 7  c P k s k1  k x10 2

(J/kg) (kg/rn3) (NS/m 2) (3/kg-K) (V/rn-K) (H/rn-K) (H/rn-K)

2.257 59.77 120.3 2028 19 .685 2.479
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1.6.1. Effect of Conjugate Axial Conduction

Table 1.8 shows the six cases which have been investigated for the

conjugate heat transfer effect using the vapor properties of sodium. The

property and parameter specifications needed for computation are the same

as that of Case B (Table 1.6) except for the thermal conductivities and the

wall and wick thicknesses. For all of the cases, the vapor thermal

conductivity and vapor core radius are held constant, which are kv = 0.0353

(V/m-K) and Rv = 0.0086 m.

Table 1.8 Case Specifications for Conjugate Effect Analysis

Case no. Klv Kwl A1  Aw  Case No. Klv Kwl A I

B 983. 0.69 0.084 0.116 B3 100 1000 0.1 0.1

B1 100 10 0.1 0.1 B4 100 10 0.2 0.2

B2 100 100 0.1 0.1 B5 100 10 0.01 0.01

Figures 1.12 and 1.13 show the effect of the thermal conductivity ratio

Kwl on the performance of a sodium heat pipe with the pipe wall and

liquid-wick dimensions held at A w = A1  0.1, Rer,e -4.0, and Kiv = 100.

Fig. 1.12 presents the interfacial heat flux variation along the

liquid-vapor interface with three different thermal conductivity ratios:

Kwl : 10, 100, 1000 (Case B1, B2, B3). In addition, the solution for Case

B is also presented. Fig. 1.13 shows the outer wall and iaterface

temperature variations for the same cases. The effect of conjugate axial

conduction becomes very significant as Kwl increases. When Kwl 10, the

results show a fairly uniform distribution of heat flux with the ratio
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close to unity at both the evaporator and condenser, and zero in the

adiabatic section. As Kwl increases, the results show that the conjugate

effect makes the heat flux less uniform and the heat flux deviates from

unity. The axial wall conduction in the evaporator tads to transfer the

heat to the adiabatic section. Since the constant heat fVux boundary

condition is specified both at the outer wall of the evaporator and

condenser, the interfacial heat flux in the evaporator becomes less than 1.

In the condenser section, the heat is conducted from the evaporator, so

that less heat flux is needed at Uhe interface to satisfy the outer wall

constant heat flux boundary condition. As the results show, the

interfacial heat flux starts from a negative number at the end of the

adiabatic section and gradually increases to unity at the end of the

condenser. At Kw : 1000, a significant variation of the interfacial heat

flux can be noticed cke to axial conduction. Obviously, the inclusion of

axial wall and liquid-wick conduction is very important for this case.

Also, the results for Case B are almost identical to this solution when no

axial conduction is considered. Thus, the conjugate effect of this case

can be excluded while discussing other effects.

The interfacial heat flux should be zero at the adiabatic section if

there is no axial conduction, but because of the inclusion of axial

conduction, the heat flux along the adiabatic section is no longer zero.

Since the local qm at the adiabatic section is zero, the qm of the

evaporator is used here for the calculation of qi/q m  in the adiabatic

section. The negative value of qi/q in some regions of the adiabatic

section is because the sign of qi changes in the adiabatic section.
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Actually, because of the axial conduction in the pipe, the region of the

adiabatic section near the condenser acts as part of the condenser,

likewise the region adjacent to the evaporator acts as part of the

evaporator. Only one point in the adiabatic section is truly adiabatic

For Kwl = 1000, the interface temperature distribution becomes more

uniform and correspondingly, the outer wall temperature varies more

smoothly as shown in Fig. 1.13. Therefore, it is always beneficial to have

a large Kwl for better heat pipe performance.

Figures 1.14 and 1.15 show the effect of the wall and liquid-wick

thicknesses on the heat pipe performance. Three different thicknesses Aw =

A1  = 0.2, 0.1, 0.01 (Case B4, B1, B5) were chosen with Kiv = 100, Kwi ! 10

and Re = -4.0. Fig. 1.14 presents the heat flux variation along ther,e

liquid-vapor interface. When the thickness is very small (Aw  A 1 I 0.01),

the results show that the heat flux at both the evaporator and condenser

almost equals unity which means the axial conduction is insignificant. As

A increases, the effect of axial conduction becomes more pronounced. Fig.

1.15 gives the interface and outer wall temperature distribution. The

outer wall temperature should be equal to the interface temperature at the

adiabatic section if there is no axi- .uction, but as the results show,

there is a temperature difference for the cases presented and the case Aw =

a1 = 0.2 has the largest difference. However, no significant effect of

axial conduction is noticed within the range presented. It is confirmed

here that for small values of A, the axial heat conduction through the wall

and liquid-wick can be neglected because the results approach that of a

constant heat flux at the interface. It is also interesting to note that
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the outer wall temperature in the middle of the adiabatic section is fairly

close to the vapor temperature, which is a common practice to estimate the

vapor temperature by measuring the outer wall temperature in the middle of

the adiabatic section.

1.6.2 Effect of Vapor Compressibility

Figures 1.16 through 1.18 show the effect of compressibility on the

sodium heat pipe vapor flow. Figure 1.16 gives the pressure variations

along the liquid-vapor interface for three different vapor flow models:

the present compressible and incompressible results, as well as the

incompressible similarity solution by Faghri (1988). We found that the

results for the incompressible similarity solution and the present

incompressible numerical analysis are very close. The maximum deviations

are less than 6% for all three cases presented. The comparison between the

compressible and incompressible models shows a large deviation for the case

of Rer, e = -6.0 (Case C), which is about 24% at the inlet of the condenser.

The maximum deviations for the case of Rer e : -4.0 (Case B) and Re =

-2.0 (Case A) are about 11% and 3%, respectively, with very small

deviations at the end of the condenser. Therefore, the compressibility of

the vapor does not have a significant effect on the total vapor pressure

drop.

The outer wall temperature uniformity is the major concern for heat

pipe users and is easy to measure experimentally. The outer wall
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temperature distribution is thus presented here in Fig. 1.17 to see the

effect of compressibility. As the results show, a significant deviation

exists between the compressible and incompressible models for the case of

Rer,e = -6.0 (Case C). The incompressible model gives a more uniform

teoaperature profile than that of the compressible model. For the case of

10 = 5350C, the largest deviation of these two models is about 1OOC. The

deviations are less significant for the results of Rer,e = -4.0 (Case B)

and Rer,e  -2.0 (Case A).

Since the Mach number is a measure of the effect of the vapor

compressibility, the variation of the Mach number, M, along the centerline

of the pipe is shown in Fig. 1.18. The compressibility effect is important

when M , 0.3 and is verified here from the present numerical results of the

heat pipe analysis. Ve know from the case of Rerle : -6.0 (Case C) that

when the Mach number is less than 0.2, very small deviations are noticed,

but when M > 0.3, the deviation becomes significant. The maxim a, deviation

of about 24% occurs at the exit of the adiabatic section with M=0.66.

Comparing Fig. 1.18 with Figs. 1.16 and 1.17, we notice that the deviation

of the models for the pressure and temperature variations correspond to the

Mach number variation. As the Mach number increases, the deviation between

the compressible and incompressible results increases.

Figures 1.19 and 1.20 show the effect of compressibility on the water

heat pipe vapor flow (Case D). A comparatively large radial Reynolds

number, Rer,e  -50, is chosen to see the compressibility effect. Fig.

1.19 presents the pressure variation along the vapor-liquid interface for

the compressible and incompressible models. The profiles almost overlap
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along the evaporator and condenser sections with only a very small

deviation of less than 1.5 in the adiabatic section. Fig. 1.20 shows the

Mach number variation along the centerline of the vapor space. It shows

that the maximum Mach number is only about 0.018 and the results for both

cases are very close to each other. This is because for water as the

working fluid, the vapor density is much greater than that of sodium vapor,

so the vapor velocity is much smaller for the water heat pipe for a given

heat input. Actually, Case D has a fairly high heat transfer rate, but the

Mach number is still very small. Thus we concluded that the effect of

vapor compressibility is not important for heat pipes using water as a

working fluid.

1.6.3. Pressure Recovery and Flow Reversal

The pressure of the vapor in the evaporator decreases along the path of

the vapor stream because of friction and acceleration of the flow as a

result of the injection of vapor. In the condenser section, the extraction

of mass leads to a deceleration of the flow, i.e., to an increase in

pressure, while friction lowers the pressure of the vapor. The variation

of pressure in the condenser section can be different, depending on the

ratio of effects of friction and inertia. The results in Fig. 1.16 show

that the extent of the pressure recovery increases as the condenser radial

Reynolds number increases. For the case with Rer c = 1.23 (Case A), almost

no pressure recovery can be noticed. This is a result of the viscous

effect dominating with the small radial Reynolds number. For Re r 2.67r~c

(Case B) and Rer, c = 4 (Case C), the pressure recovery is approximately 35%

and 55, respectively. Fig. 1.19 shows a large pressure recovery in the
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condenser section for the heat pipe using water as a working fluid (Case

D). Up to 90% of the pressure drop in the evaporator and adiabatic

sections were recovered at the end of the condenser.

We also found that flow reversal takes place in the condenser region

when the pressure recovery is significant. Flow reversal was not found for

the case of Rer c = 1.33 (Case A), and a very slight amount of flow

reversal at the end of condenser was noticed for Rer,c = 2.67 (Case B),

which is in agreement with what Bankston and Smith (1973) observed. The
dimensionless axial velocity profile for Re = 4.0 at three different

r,c

axial locations is plotted in Fig. 1.21. It shows clearly that the

vplocity in the condenser section is more extruded and flow reversal occurs

near the wall region. Also, we found for water as the working fluid, a

larger Rer, c compared with sodium as the working fluid has to be specified

to get flow reversal. So for different working fluids, the starting point

for flow reversal will depend on different Re values.r,c

1.6.4. Effect of Viscous Dissipation

The viscous dissipation term in the energy equation is included in the

present analysis. We intend here to see the effect of this term on the

sodium heat pipe vapor flow. For metallic working fluids, the density is

extremely small at low vapor pressures and even for a relatively small heat

transfer rate, the vapor velocity in the axial direction can be very large.

The results presented in this section correspond to Case B in Table 1.6 for

the compressible and incompressible models. Fig. 1.22 shows the axial

dimensionless velocity profile in the radial direction at three different
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locations for Case B of the incompressible flow. Only the case with

viscous dissipation is presented in this figure since the cases with and

without viscous dissipation are almost identical. Since the dominant term

in the viscous dissipation of Eq. (1.2.4) is (Owv/Or)2 , it is helpful to

have a velocity profile for discussion. From Fig. 1.22 the axial velocity

profile in the evaporator is very close to that in the adiabatic section;

this means that the velocity is nearly fully developed in the evaporatnr

and adiabatic regions. In the condenser region, however, the mass

extraction makes the profile extruded, which means that it has a larger

velocity variation in the radial direction which had also been observed by

Busse (1987a).

Figure 1.23 shows the effect of viscous dissipation on the radial

temperature variation at three different axial locations for incompressible

vapor flow in the sodium heat pipe for Case B. The temperature variations

in the liquid-wick and wall regions are also presented in this figure.

Fig. 1.23 also shows that the viscous dissipation can change the radial

temperature distribution significantly. In the beginning of the

evaporator, the two temperature curves are quite close, but in the

adiabatic and condenser regions, the temperature difference .L'een the

curves which include and do not include viscous dissipatio, ire much

larger. For this particular case with T 0 = 535°C, it can be as much as 80C

difference. Also, the viscous dissipation term increases the temperature

more near the wall becauise of the larger velocity gradient, as shown in

Fig. 1.22.
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Figure 1.24 presents the effect of viscous dissipation on the axial

temperature variation. In PHOENICS, only the viscous dissipation term for

incompressible flow can be controlled using one command. This is because

another term DP/Dt is also involved in the same command for the

compressible flow model. Ve cannot deactivate the viscous term alone.

Therefore, the results are discussed based on the incompressible flow

model, but the results with viscous dissipation for the compressible model

are also presented for the axial temperature variations. The figure shows

that for incompressible flow, the interface temperature almost remains the

same both with and without the viscous dissipation terms. However, a large

difference exists in the vapor temperature along the centerline of the

pipe. In the evaporator, the two cases are close to each other but then

start to deviate significantly from each other in the adiabatic section.

This deviation continues through the heat pipe to the end of the condenser

section. The largest deviation occurs near the end of the condenser. The

centerline temperature for compressible flow is higher than that of the

incompressible model, which means that the viscous term has a more

significant effect on the compressible flow model. This is probably

because the momentum equation is coupled with the energy equation by the

density variation, so the viscous term will affect the pressure and

velocity profiles and thus the overall temperature distribution. For the

incompressible model, the only link between the momentum and energy

equations is the vapor heat conduction term at the vapor-liquid interface

in Eq. (1.15), but the effect is very small. Therefore, the velocity fields

with and without the viscous terms are almost identical to each other.
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Since the temperature boundary condition at the interface is ccntrolled by

the Clapeyron correlation, the interface temperature variations are

slightly different for both cases.

1.6.5. Elliptic and Parabolic Comparison

Figure 1.25 presents a comparison between the normalized pressure drop

profiles of the elliptic and partially parabolic solutions for the

compressible heat pipe vapor flow. For the partially parabolic solution,

the axial diffusion terms are neglected in the governing equations. The

results show that the partially parabolic solutions have larger pressure

drops and the deviation ranges from 1-11% for the cases presented. For the

case using water as the working fluid with a higher radial Reynolds number

of Rer,e = -50 (Case D), a larger deviation of 11% is noticed at the end of

the condenser. For the case of a sodium heat pipe with a radial Reynolds

number of Rer, e  -6.0 (Case C), the deviation is about 7%. When the

radial Reynolds number is decreased to Rer,e  -2.0, the two curves almost

overlap. This trend is similar to what Tien and Rohani (1974) observed,

but the differences found here between these two models are not as large as

what they observed. Faghri and Parvani (1988) did a comparison between the

elliptic and partially parabolic solutions for the incompressible vapor

flow in a concentric annular heat pipe. In that study, very small

deviations were observed due to the incompressible flow analysis. However,

the present results show that it is better to use the elliptic approach

when the radial Reynolds number is large for the compressible model.
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Since no axial heat conduction through the wall is considered for the

present partially parabolic solution, the total heat input at the

liquid-vapor interface for the parabolic solution is greater than that of

the elliptic solution. As a result, more liquid is evaporated and a larger

pressure drop is expected for the partially parabolic solution. As

expected, for the case with a high Kwl discussed in the section concerning

the conjugate effect, the elliptic and partially parabolic solutions have

larger deviations because of the significant axial heat conduction through

the pipe wall. The maximum deviation of the pressure variation between the

two solutions for Kwl 1000 (Case B3) is about 12.
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1.7 Conclusions

The high and low temperature heat pipes have been studied numerically by

using the generalized computer code PIOENICS for steady-state operation.

The objective of this study is to find the effects of conjugate heat

transfer and vapor compressibility. The following conclusions have been

made:

1. The numerical results show a fairly good agreement compared with the

experimental data at both low and high operating temperatures. It is

also believed that the pres2nt model can predict the general

performance of heat pipes with single or multiple heat sources.

2. The axial conduction through the wall and liquid-wick with large values

of K wl has a positive effect on the heat pipe performance. The

conjugate axial conduction tends to make the outer wall and interface

temperature more uniform. For the case with relatively small values of

Kwl and A, the results approach the solution of the case when there is

no axial conduction considered.

3. (a) The vapor compressibility can be important for the prediction of

the sodium heat pipe temperature profile when the Mach number is

greater than 0.3.

(b) The compressible and incompressible models predict almost the same

value for the total pressure drops.
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(c) For the incompressible model, the similarity solution by Faghri

(1988) shows a very good agreement (less than 1.5% deviation) for the

pressure profile prediction compared with the present numerical

results.

4. Up to 90% of the pressure recovery in the condenser section has been

found for the heat pipe using water as a working fluid. The flow

reversal for a sodium heat pipe vapor flow begins at Rer, c = 2.67 (Case

B) for the cases studied.

5. The viscous dissipation term in the energy equation does affect the

temperature profile inside the vapor space, but has a very small effect

on the interface temperature profile.

6. In general, the partially parabolic solutions are very close to the

elliptic solutions except for the cases with a large radial Reynolds

number at the interface or large values of Kwl"

7. For the heat pipe using water as the working fluid, the vapor

temperature along the heat pipe is almost u-niform. This is due to a

very small pressure drop along the pipe compared with the static vapor

pressure and also the thermodynamic equilibrium between the pressure

and temperature at the liquid-vapor interface.
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II. SIEIULTANEOUS AXIAL CONDUCTION IN TIE FLUID AND THE PIPE

FOR FORCED CONVECTIVE LAIINAI FLOW WITH BLOWING

AND SUCTION AT THE WALL

2.1 Sumuary

Numerical solutions are reported for conjugate heat transfer in a

porous pipe having an internal laminar flow with blowing or suction at

the inner surface of the pipe and constant heat flux at the outer surface

of the pipe. The effect of the simultaneous axial conduction through

the wall and the fluid has been studied for the combined hydrodynamic and

thermal entry lengths. The results show that the ratio of the thermal

conductivities of the pipe wall to the fluid and the thickness of the

pipe wall may become significant factors on the heat transfer when the

Peclet number is small, especially for the case when fluid is injected

into the pipe. Also, the effect of axial wall conduction for the case of

constant heat flux at the outer wall surface can be neglected when the

wall thickness is small and the ratio of the conductivities of the wall

to the fluid approaches unity.
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2.2 Introduction

Conjugate heat transfer in a pipe with internal laminar fluid flow

is a problem of considering the simultaneous heat transfer inside the

fluid and the solid wall. In conventional convective heat transfer

problems, the thermal boundary condition at the solid-fluid interface is

assumed to be known, either in terms of the heat flux or the temperature.

Some considerations have been given in the past concerning the errors

that may be introduced by this assumption.

The primary research on the conjugate heat transfer problem for the

circular tube was carried out by Luikov et al. (1971), but their

closed-form solution involved highly complicated functions. Because of

this fact, no numerical results were reported. A detailed solution was

given by Mori et al. (1974, 1976) for constant heat flux and constant

temperature at the outer surface of the pipe. The solution was obtained

by assuming that the velocity profile was the fully developed parabolic

profile and by neglecting the axial conduction of the fluid. Mori et al.

(1974) also assumed the wall-fluid interfacial temperature distribution

in the axial direction was in the form of a power series with unknown
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coefficients. With this temperature distribution as the interfacial

boundary condition, the analytical solution to the energy equation for

the fluid was obtained using the Graetz solutions. The solution to the

energy equation for the wall was then derived readily since all the

boundary conditions were now known. Barozzi and Pagliarini (1985)

employed a finite element method in conjuction with Duhamel's theorem to

extend the results given by Mori et al. (1974) for different pipe

lengths. Results by Mori (1974), and Barozzi and Pagliarini (1985) are

applicable to cases with short heating sections due to the insulated

boundary conditions imposed on the wall upstream and downstream of the

heated section.

The coupled effect of axial conduction in the wall and the fluid in

laminar pipe flow with an applied wall heat flux in the downstream region

was studied for very long ducts numerically by Faghri and Sparrow (1980)

and Zariffeh et al. (1982) and analytically by Campo and Rangel (1983)

and Soliman (1984). In these analyses the pipe is extended indefinitely

upstream and downstream of the heating section. Faghri and Sparrow

(1980) investigated simultaneous wall and fluid axial conduction in

laminar pipe flow with the assumption that the pipe wall was thin and the

velocity profile was the fully developed parabolic profile. They

observed that axial conduction inside the tube wall can cause a

substantial preheating of both the wall and fluid in the upstream region

where there is no external heat input. Conjugate heat transfer when the

fluid is turbulent was investigated by Kuznetzov and Belousov (1974),
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Sakakibara and Endoh (1977) and Lin and Chow (1984).

Recently, more attention has been given to the fluid flow and heat

transfer in porous pipes with applications such as transpiration cooling

and heat pipes. Usually, the porous pipe wall is of a significant

thickness, so that axial wall conduction may have an influence on the

heat transfer. In a heat pipe, the thin wick is attached to the inner

wall of a thick tube to achieve the capillary force for the liquid

return. Blowing and suction occurs because of the evaporation and

condensation of the working fluid in the heating and cooling segments of

the heat pipe. This application was the motivation for the present work.

No literature has been found concerning the problem of conjugate heat

transfer with blowing and suction at the wall. The objective of the

present analysis is to investigate the effect of axial conduction in

porous pipes in the combined hydrodynamic and thermal entry lengths with

constant heat flux at the outer surface of the pipe wall. In addition,

the influence of the Peclet number is stressed due to the inclusion of

the axial conduction term in the fluid so as to complete the analysis

given by Nori et al. (1974). The numerical solution relies on the

control volume formulation by Patankar(1980) and an iterative scheme

which dealt simultaneously with the fluid and the wall. The numerical

results for the Nusselt number and temperature at the interface are

presented as in by Mori (1974, 1976). In addition, the interfacial heat

flux for both porous and impermeable wall cases are also given to make

the results useful in engineering applications.
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2.3 Nathe-atical Formulati-n

The model used for analysis is shown in Figure 2.1. A constant heat

flux q is applied uniformly along the outer surface of the wall over a

finite length L. The fluid enters the inlet of the pipe with a uniform

velocity win and uniform temperature T in. The injected and extracted

fluid is the same as that of the main pipe flow and is at the interface

temperature when it enters or leaves the walls. The equations governing

the present problem are the conservation of mass, momentum and energy

equations whereby assuming laminar, steady and incompressible flow with

constant fluid properties are reduced to the following forms in

cylindrical coordinates.

v v w 0

O+ +o (2.1)

Tr- - [? (rv)(

v j w : ] a (2.3)
v 8V 1 a aT 1 a 8}

+ w - r r [r 0-] + Iz2  z (2.4)pW a { o2; }
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We should note that in equations (2.2-2.4), the terms in braces {}

are associated with axial diffusion terms. These terms are neglected

when the partially parabolic version is considered but are accounted for

in the elliptic case. The thermal conductivity k of the solid is in

general different from that of the fluid. At the solid-fluid interface,

the harmonic mean is used to determine the thermal conductivity.

The boundary conditions for the case of uniform inlet conditions and

constant heat flux at the outer wall are defined as follows:

Inlet plane: z = 0, 0 < r < ri

w = win, T = Tin v =0 (2.5)

Or
w

ri < r < ro, W = 0 (2.6)

Outer wall: 0 < z < L, r r 0

T wall qo/kw = constant (2.7)

Inner wall: 0 < z < L, r = r

W 0 (2.8)
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V i > 0  suction

Iv 0 blowing (2.9)
vi = 0 impermeable wall

Tf = Tw (2.10)

kf T- = kw T (2.11)

Outlet of the tube (elliptic solution): z = L

OT
r < r < rw J = 0 (2.12)

8T f
0 < r < ri, o-- =, p = 0 (2.13)

Ve should emphasize that the physical situation corresponding to this

problem is the one in which conduction is confined to a finite length of

heated wall, with an adiabatic boundary condition imposed at the upstream

and downstream ends of the heated segment. This constraint restricts the

results to tubes with short heating sections.

The governing equations (2.1-2.4) with the appropriate boundary

conditions (2.5-2.13) contain five independent parameters:

Peclet number of the fluid,

Pe = Re * Pr = 2 ri win Pf Cp/kf
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Radial Reynolds number at the solid-fluid interface,

Rei = vi ri/V

* Vail-to-fluid thermal conductivity ratio,

K = kW/kf

* Thickness of the wall,

A = (r0-ri)/ 2ri

Heated length,

L L/2riPe

The computations are carried out for the Peclet number of the fluid

of 100 and 1000 with A of 0.01 and 0.1 and K = 1, 500 and 5000 for

different suction and blowing radial Reynolds numbers at the wall. This

choice of parameters covers a wide range of possible combinations of

fluid and pipe wall properties, flow rates and boundary condition

specifications. The negative and positive radial Reynolds numbers at the

wall indicate blowing and suction, respectively.

The numerical results can be presented for the following four

dimensionless groups in terms of the dimensionless axial distance z =

z

1

* Interface temperature,

T. - T.n
T i Tin
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* Bulk Temperature,

Tb - Tin
0b -qo ri/kf

* Nusselt number,

8T2ri(r )

Nu 
r=r

z T i- T b

where

8T qi( r r=r i-  -Y ,-

* Heat flux across the interface,

qi/qmean

Although the Nusselt number is traditionally the main dimensionless

parameter used in presenting results for conventional convection

problems, there is a good justification not to do so for conjugate heat

transfer problems because qi' Tb, Ti are all unknowns in the definition

of the Nusselt number as given above. Nori et al. (1974) presented

results only for Nuz and Oi, and therefore their results are of no use

for direct engineering applications. From the engineering viewpoint, the

most important information is the rate of heat transfer across the

interface. So the results are presented in terms of the dimensionless
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group qi/qmean as well as the Nusselt number. The local heat flux across

the interface q is approximated by kh (Ti~w- Ti~f) with kh being theriln (ri,w/ri,f)

harmonic mean of the thermal conductivities of the solid wall and the

fluid which is defined as 2kf*kw/(kf+kw) by Patankar (1978). The radial

distance from the pipe axis to the interface is ri and T. and Ti'f are

the temperatures at the grid nodes adjacent to the interface on the wall

and the fluid sides, respectively. The constant mean heat flux at the

interface without considering axial heat conduction in the tube wall

qmean is equal to:

q q0 r 0mean o rqo
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2.4 Solution Procedure

The problem is solved as a convection-conduction problem throughout

the entire calculation domain, but since the velocities in the solid are

zero, the analysis in the solid region was for a pure conduction problem.

To account for the discontinuity in the value of the thermal conductivity

at the wall-fluid interface, the transport coefficient in the energy

equation is evaluated as the harmonic mean of the values on each side of

the interface developed by Patankar (1980).

The finite difference iteration method of solution developed by

Spalding et al. (1980) which is employed in the generalized PHOENICS

Computational Code by Spalding and Rosten (1985) is used for the elliptic

and partially parabolic solutions of equations (2.1-2.4) with the

boundary specifications given in equations (2.5-2.13). By this method,

the above equations are solved over a square mesh by the finite control

volume method outlined by Patankar (1980). Finite control volume

equations are derived by the integration of the differential equations

over an elementary control volume or a cell surrounding a grid node.

Upwind differencing is used for the convective terms.

Pressures are solved from a pressure correction equation which

yields the pressure change needed to procure velocity changes to satisfy

mass continuity. The 'SIIPLEST' practice by Spalding (1980) is employed

for the momentum equations. The most significant difference between
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'SIMPLEST' and the 'SIMPLE' algorithm by Patankar (1980) is that in the

former the control volume formulation coefficients for momentum contain

only diffusion contributions, the convection terms being added to the

linearized source term of the equations.

The equations are solved by a line-by-line procedure which is

similar to Stone's Strongly Implicit Method but is free from parameters

requiring case-to-case adjustment and is therefore less complex. The

temperature is solved in a whole-field manner, and the pressure

correction equation is solved in a slab-by-slab manner.

The accuracy of the numerical solution was checked in two ways: the

grid spacing was systematically varied and the results for different grid

sizes were compared to the extrapolated results of the infinitesimal grid

spacing, and the numerical results were compared with a known solution

for uniform heat flux and temperature at the interface without axial

conduction in the wall or the fluid and with no blowing or suction by

Hornbeck (1966). The test was passed at a satisfactory level of

agreement, within 17 for most of the results.

A number of different uniform grid sizes were chosen to test the

accuracy of the solution. After considering the accuracy, computer time

and the truncation error, the final grid sizes that were chosen for the

presentation of results are as follows:

20x4x40 (radial fluid x radial solid x axial) for A 0.01

20x1Ox20 (radial fluid x radial solid x axial) for A 0.1
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A converged solution was obtained by checking the variation of the

residuals in terms of the sweep number. When increasing the sweep number

to the extent that no further decrease of the residuals is observed, this

means the results are converging. For this conjugate problem, 150 sweeps

were adequate for convergence of the elliptic solution.
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2.5 Results and Discussion

The numerical results were obtained for at least two different

values of each of the dimensionless parameters in order to determine the

importance of axial conduction. These parameters are the Peclet number

of the fluid, the radial Reynolds number at the solid-fluid interface,

the wall-to-fluid thermal conductivity ratio, and the dimensionless

thickness of the pipe wall. In the present work, only one dimensionless

pipe length L 0.05 is chosen to avoid the excessive presentation of

the results. Axial heat conduction along the pipe wall is usually

neglected by practicing engineers when designing heat exchangers or other

kinds of heat transfer devices because it is very difficult to deal with

conjugate heat transfer. Therefore, it is of practical importance to

know the errors that may be introduced by this assumption. The numerical

results for the three dimensionless variables: the Nusselt number Nuz,

the interface temperature Oi, and the heat flux across the interface

qi/qmean are given in terms of z for different values of K, A, Pe and

Re. The bulk temperature 0b can be calculated from the information

presented.

Figures 2.2 through 2.4 show the effect of the thermal conductivity

ratio for A = 0.i, Pe = 100 and Rei = 1.0, 0.0, -3.0 on the axial

variation of the Nusselt number, the interface temperature and the

interfacial heat flux, respectively. The effect of axial conduction
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becomes more important as the conductivity ratio, K, increases. As K

increases, the results show that the interface temperature distribution
*

changes gradually to a constant temperature along z , and the Nusselt

number approaches that of a constant wall temperature. Physically, when

K is very large the axial conduction in the wall has a tendency to make

the wall temperature uniform. It is similar to the situation when

condensation or evaporation at a wall occurs, which leads to a uniform

wall temperature because of the high heat transfer coefficient. The

blowing case has a higher interface temperature and the suction case has

a lower interfacial temperature in comparison with the case in which the

wall is impermeable. At K = 5000, the interface temperature distribution

becomes constant except for the short entrance region and the Nusselt

number also approaches the constant temperature results by Hornbeck

(1966). It is noticed from the present results and those presented by

Raithby (1971) for the case of no axial conduction that blowing at the

wall caused a bigger difference between the Nusselt numbers for the cases

of constant heat flux and constant wall temperature. Sn the effect of

axial conduction is more pronounced in this case than in other cases. In

general, as the thermal conductivity decreases, the Nusselt number

increases and the interfacial heat flux tends to become more uniform.

For K = 1, the results show that the interfacial heat flux almost becomes

uniform for all three cases. Also, the Nusselt number approaches the

case of constant heat flux at the interface. This is because the axial

conduction causes both the interfacial temperature and bulk temperature

106



to increase at approximately the same rate, so that the aifference of

T-Tb and (8 r almost remains unchanged. The numerical results for

constant heat flux and temperature at the interface for blowing and

suction are computed with the consideration of axial conduction through

the fluid. The numerical results for the Nusselt number for K = 1

without blowing and suction compares favorably with the numerical results

for the case of constant heat flux at the interface as given by Hornbeck

(1966). The Nusselt number for K z1 with suction is slightly smaller

than the results for constant heat flux at the interface and the results

for the case of blowing is slightly greater than the results for constant

heat flux at the interface. This is probably because the results for

constant heat flux at the interface include the axial heat conduction

through the fluid. The results for the Nusselt number with K > 1 are

between two limiting cases: constant wall temperature and constant heat

flux at the interface. This behavior was first noticed by Mori et al.

(1974) for impermeable walls. The present analysis shows also the same

general trend for the cases of blowing and suction. It appears that the

influence of axial wall heat conduction must be accounted for if the

value of K is large.

Figures 2.5 through 2.7 show the effect of varying the tube wall

thickness on the Nusselt number, the interface temperature and the

interfacial heat flux, respectively. From these results, we found that
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for small A the effect of axial heat conduction through the wall can be

neglected since the results approach that of constant heat flux at the

interface. Faghri and Sparrow (1980) assumed a thin-walled tube, so that

all of the results for fully developed flow approach the results for a

constant heat flux at the interface. We found that when the wall

thickness increases, the axial wall conduction becomes more important,

and the interface temperature becomes more uniform because axial heat

conduction tends to level out the temperature along the pipe. These

results also show that the interfacial heat flux tends to be uniform when

the wall becomes thinner. It is interesting to notice that all of the

results for different values of A are within the two limiting cases:

constant heat flux at the interface and constant wall temperature at the

interface. We should mention that when K - 1, the axial conduction

becomes less important so that the influence of A will also become less

important. When K - a the influence of A will become pronounced. This

seems quite reasonable from the physical viewpoint of the problem.

Apparently from these results, we should pay more attention to the

blowing case with large K. The trends of the results concerning the

influence of the wall thickness agrees fairly well with those by Mori

(1974) for the case of an impermeable wall.

Figures 2.8 through 2.10 show the comparison between the partially

parabolic and the elliptic solution on the Nusselt number for different

values of Pe and K. Figure 2.8 shows the values of the Nusselt number

112



v--

0I cn~

0 V

co1 o I 1 .
I X 0

II 0

C\ C I

0 / 0

/ /-6

00

E-zO

113



x 0

0

014)

0 00

1141



Cc

.00

x 0

0-

-0 0

O(O
C. .nC.N

115j



predicted with and without wall and fluid axial conduction for Pe 100,

A = 0.1, K = 500 and Rei = 1.0, 0.0, -3.0. When axial conduction is

neglected, the Nusselt number is overpredicted along the entire entry

region. This effect diminishes as the wall-to-fluid conductivity ratio

is reduced as shown in Figure 2.9. When the Peclet number is increased

to 1000, smaller differences are observed.
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2.6 Conclusions

The effect of axial heat conduction have been studied for cases with

blowing and suction and with an impermeable wall. We concluded that

large errors will arise in the solution when the axial wail conduction is

neglected for blowing cases with large K. As K increases, the results

approach the solution of constant wall temperature at the interface

without axial wall conduction. For K = 1, the local Nusselt number

approaches the solution of constant heat flux at the interface. It is

confirmed that the effect of axial conduction in the wall can be

neglected reasonably when the wall is very thin. But when the wall is

very thick, the results approach the solution of constant wall

temperature at the interface. Increasing Pe by a factor of 10 reduces

the effect of axial conduction much more than a corresponding reduction

of & or K.
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III. THE THERMAL PERFORMANCE OF HEAT PIPES VITH LOCALIZED HEAT INPUT

3.1 Sumnary

The performance of heat pipes with localized heat input including

the effects of axial and circumferential heat conduction under high and

low working temperatures was investigated. The numerical results show

that when heat pipes are spot heated, the peak temperature of the wall is

greatly reduced and the surface can be protected from being burned out by

the high heat flux. The boiling limitation becomes the most important

limitation for this type of heat pipe. Numerical results for block

heating a heat pipe with low working temperatures indicate a good

agreement with existing experimental data. Also, most of the input heat

passes through the wall beneath the heated block.
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3.2 Introduction

Since the publication of the first paper on heat pipes, various

kinds of heat pipes have been manufactured, tested, and put into

operation. In the meantime, thousands of theoretical and experimental

analyses dealing with the characteristics of heat pipes have been

published. Among the special types of heat pipes, localized heat input

or spot heated heat pipes have not been extensively studied. This ig

suprising since many high performance heat pipes are subjected to

localized heating for a variety of applications. The study of spot

heating heat pipes is important in research areas such as the cooling of

leading edges on hypersonic aircraft, the protection of special surfaces

from being attacked by very high heat flux sources such as a laser beam,

cooling of microelectronic elements, etc.

According to the working conditions and the application, spot heated

heat pipes can be classified into two major types: namely, heat pipes

with low or moderate working temperatures mainly used for the purpose of

energy conservation or electronic cooling, and heat pipes with high

working temperatures used to protect a surface from being burned out by a

very high heat flux. Rosenfeld [1987] studied the performance of line

heated heat pipes with low working temperatures analytically with a

one-dimensional model (circumferential direction) and numerically with a

two-dimensional model (radial and circumferential directions).

For the present analysis of spot heating or block heating, we should

consider axial conduction, which has a much more pronounced effect than

conduction in the radial direction. Furthermore, the effect of radiation
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is included in the analysis of spot heated heat pipes with high working

temperatures. In addition, the operating temperature of the heat pipe

should be obtained by an overall energy balance rather than an input

condition as done by Rosenfeld [1987] for the line heated heat pipe.
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3.3 Analysis

3.3.1 Spot heated heat pipes with high working temperatures

Spot heated heat pipes should be used to protect a surface from

being burned out by a very high heat flux by using the working fluid

within the porous media ingide the pipe as an evaporator to absorb the

heat energy. The vapor flows to the rest of the porous surface and

releases latent heat energy as it condenses. The energy is dissipated

into space or to the environment by radiation from the outer surface.

Because of the high latent heat of the working fluid, a large amount of

incoming heat can be absorbed by evaporation, and spread to the

surrounding surface of the wall to be dissipated into space, without

causing the temperature in the wall to become too high and burn out. The

positions of the evaporator and condenser are not fixed nor are their

areas. These depend on where the pipe is hit by the incoming heat flux,

and how large the surface area is that is being hit by the heat flux.

Also, this kind of heat pipe has no adiabatic section (Fig. 3.1a). The

end caps have been removed to demonstrate the typical interior structure

and the vapor flow pattern. The origin of the coordinate system is set

at the center of the heated spot. Figure 3.1b shows a typical wall

temperature profile along the x axis at y = 0 and the vapor temperature

Ts. If the temperature of the wall is higher than Ts, it serves as the

evaporator; if the wall temperature is lower than Ts, it serves as the

condenser. This particular phenomena is not observed for conventional

heat pipes operated at a nearly constant wall temperature.

The present analysis is based on a number of physical assumptions.
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We must emphasize the wall temperature in the analysis to prevent the

heat pipe wall from melting. The heat pipe is assumed to contain only

one fluid and is operating under steady-state conditions. This means

that the vapor region is nearly isothermal, and the total energy input

and output are equal. The wick-liquid matrix is assumed to be very thin,

and its existence is represented by the evaporation heat transfer

coefficient, HE, and the condensation heat transfer coefficient, HC-

This is a good approach for the purpose of designing a heat pipe because

in most cases, evaporation and condensation heat transfer coefficients in

porous media can only be obtained from experimental data (Dunn and Reay

[1982]; Groll et al. [1984]; Abhat and Seban [1974]). The common

measurable parameters in experiments on heat pipes are Ts, R E' HC, and

the wall temperature. The results of the analysis based on the above

concept can be readily used as a guide when designing heat pipes.

Finally, it is assumed that the wall thickness is thin, and the radius of

curvature of the surface is much larger than h, so that the wall

temperature does not vary substantially with radial position in the wall.

In the Cartesian coordinate system shown in Fig. 3.1a, the

two-dimensional governing equations and boundary conditions for the wall

can be written by an energy balance of the differential elements in each

section of the heat pipe. For the evaporation section, except the

surface beneath the heated spot, the governing equation is

a OT a OT f T qE

il + ay- I k -YI - [T _ T0  V = 0(3
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where T = TE at the junction of the evaporator and the condenser

segments, f is the emissivity, 6 is the thickness of the wall, To is the

temperature of the environment, and qE is the evaporation heat flux. We

have shown that the evaporation heat transfer coefficient varies with

heat flux because the menisci in a capillary evaporator recede as the

heat flux increases. An examination of the reported data shows that a

power-law boiling relation is appropriate for relating the heat flux to

the evaporating temperature drop in a heat pipe (Rosenfeld [1987]; Dunn

and Reay [1982]), i.e.;

qE = a(T - Ts)b (3.2)

The most common values of the exponent vary from 1.0 to 2.0, with

that of liquid metal heat pipes remaining 1.0 and the coefficient a = E

in many cases (Dunn and Reay [1982]; Groll et al. [1984]; Davis and

Ferrell [1974]).

For the wall beneath the heated spot, the corresponding equation is

a OT' a oT qff qE

x-~ =0ka (3.3)

where qH is the incoming heat flux at the heated spot.

For the condenser segment, the governing equation is

a k O T a O T' 4]
+ J [iT' T 0 , H4[Ts - T] 0 (3.4)

With T TC = TE at the junction of the evaporator and the condenser
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sections, and On = 0 at the peripheral boundary of the heat pipe where n

is the normal direction of the periphery.

The vapor temperature, T., is an unknown in equation (3.4). The

fact that the vapor temperature must be determined requires one more

equation which is provided by an energy balance over the entire heat

pipe. A steady-state operation has no energy and mass accumulations, and

the vapor temperature will be adjusted according to the heat input and

the ambient conditions. This means that the condensing heat transfer is

equal to that of evaporation, and all the heat input is rejected to the

ambient, i.e.;

JfHE(T - Ts)dA = JfHc(Ts - T)dA (3.5)
AE AC

QH =  -fea(T4- T4)dA (3.6)

where Q, is the heat input through the spot; AE and AC are the evaporator

surface area and the condenser surface area inside the heat pipe,

respectively; A is the outer radiation surface area. Note that A is not

necessarily equal to AC. When spot heating heat pipes, the evaporator

and condenser are not prescribed. Usually, the heated area is small, and

a large amount of heat needs to be spread to the surrounding surfaces to

be dissipated. Therefore, AE is larger than the spot heating area AH and

as a result, A > AC.

3.3.2 Block heated heat pipes with low or moderate working temperatures

Block heated heat pipes are normally used to transport energy from
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one place to another to conserve energy or to cool electronic components.

The evaporator and condenser segments are normally separated, which is

sir lar to conventional heat pipes except for the localized heating. The

working temperature is comparatively low or moderate, which means that

radiation heat transfer is not important in the analysis of these heat

pipes.

Consider the heat pipe shown in Fig. 3.2. It has an evaporator

section of length, LE, a wall thickness, 6, an outside radius, R, and a

block heated area of width, W1 , and length, L..

The analysis here is based on similar assumptions used for spot

heated heat pipes with high operating temperatures. With a thin wall and

a large pipe diameter, the problem can be investigated in Cartesian

coordinates.

In the evaporator section, the governing equation for the pipe wall

that is not underneath the heated block is

(2T -2T a b (3 .7)

x2 + 2 k-0

and the governing equation for the wall beneath the heated block is

a2T a 2T a q

x2 + 2 - (T- Ts) - = 0 (3.8)
ax 8s

In equation (3.8), we have employed the power-law relation for the

boiling heat flux. In this situation, b is greater than 1.0. The

boundary conditions for this problem are
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= 0 at x = o and x = LE (3.9)

0 T
- 0 at s = 0 and s = rR (3.10)

Equation (3.9) defines an insulated boundary condition, and equation

(3.10) is true due to symmetry.

Equations (3.9) and (3.10) can be nondimensionalized with the

following variables:

T (T - Ts)/TH, X = x/rR, Y = s/rR

The resulting nondimensional equations are

2* 2*a 2T a 2T*b
-- + + C T =o (3-9a)
aX2  a2 1

2T* 2T* *

+ + C1T +C 2qH = 0 (3.10a)

where C -a(R)2TH b-1 /6k, C2  (7R)2/THtk and T1 is the reference

temperature.

The above model is justified because since the main purpose is to

transport energy from one place to another, the heat dissipation to the

ambient from the evaporator section is negligible. Also, because of the

large evaporation heat transfer coefficient, very little heat is

transported from the evaporator to the condenser through the pipe wall.

Section 3.4 shows the numerical results.
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3.4 Numerical Results and Discussion

The governing equations for spot heated and block heated heat pipes

are nonlinear and nonhomogeneous and require an iterative procedure. The

problems were solved by using the finite-difference method based on the

control-volume formulation (Patankar [1980]). A combination of the

direct method (TDMA) and the Gauss-Seidel method was employed to solve

the discretization equations. In some special cases, under-relaxation

parameters were used to control the advancement of the solutions. The

grid size employed in the program varies from 20 x 70 to 70 x 300

depending on the computational domain. To determine a suitable grid

size, the computed temperature profiles are compared for a number of

different grid sizes for the same problem. The maximum errors among

these grid sizes are less than 1.0%. Also, an energy balance over the

entire computational domain was checked for every computed temperature

field, the maximum error of which was at most 0.1%.

Figure 3.3 shows the numerical results for spot heated heat pipes

with high working temperatures. Like conventional heat pipes, the heat

input has a strong influence on the heat pipe performance. As the heat

input increases, the peak wall temperature increases. For example, the

peak temperature with 8000 W is more than twice as high as that with

2000 V.

In conventional heat pipes, the area available for heat input is

comparatively large, the input heat flux is comparatively low, and the

working limitation is mainly determined by the total energy input. Vith

spot heated heat pipes, the situation is different. Figure 3.4 shows the

temperature distribution of the wall with a very high incoming heat flux
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(as high as 10 kV/cm2). Comparing the curve of H = HE = BC = 10,000

V/(m2-K) and Q, = 2,750 V in Fig. 3.4 with that of Q. = 4000 V in Fig.

3.3, we know that even though the heat input Q. = 2750 V in Fig. 3.4 is

less than that of Q, = 4000 V in Fig. 3.3, its peak temperature is still

several hundred degrees higher because of the smaller area that is

heated. On the other hand, Fig. 3.4 shows that a higher heat transfer

coefficient can reduce the peak temperature, as is expected.

Also shown in Fig. 3.4 is the influence of A1 on the peak wall

temperature. The curve with a much lower peak wall temperature in Fig.

3.4 is subject to the same heat flux as that of the other three curves

(qE = 10 kY/cm2), but a smaller heating area (Q, is also smaller). The

resultant peak wall temperature is almost 1,000 degrees lower than that

with the larger heating area. In this study, the heating area is square.

Because of the small heating areas, its shape is less important.

Unlike conventional heat pipes, the thermal conductivity of the wall

influences the wall temperature distribution greatly for spot heated heat

pipes, especially in the case of a very high incoming heat flux, as shown

in Fig. 3.5. When the thermal conductivity of the wall is small, the

peak temperature would jump intolerably high and the surface would be

burned out. On the other hand, with a large wall thermal conductivity,

the peak temperature decreases sharply. This is not surprising because a

large amount of heat needs to be transferred to the surrounding wall

through a very small area by conduction.

In conventional heat pipes, better cooling conditions and a larger

cooling surface can ameliorate the performance and result in a lower

working temperature. This is also true for spot heated heat pipes. The

trend is well illustrated in Fig. 3.6, where a larger surface area
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(radiation heat transfer area) corresponds to a lower working temperature

Ts. Also, the peak wall temperature is decreased accordingly. But, if

we pay attention to the area around the center of the heated spot, we may

notice that the temperature difference between the peak temperature and

the working temperature for different curves almost remains the same.

This local phenomenon obviously results from the localized heat input

characteristics of the heat pipe. The most important factor which

determines the performance is the working conditions at the heated spot.

To estimate the validity of spot heating heat pipes to reduce the

wall temperature, we compared the wall temperature of a plate that is not

a heat pipe with that of a plate heat pipe. The curve with the solid

circle legend in Fig. 3.7 is the wall temperature profile of a spot

heated heat pipe under normal working conditions, while the curve

indicated with H = 0 is the temperature profile of a plate that is not a

heat pipe (H E = Rc = H : 0), with other conditions being the same.

Obviously, the peak wall temperature of the surface adopting heat pipe

technology is reduced significantly.

When we compare the conventional heat pipes, it is clear that spot

heated heat pipes have small evaporator surfaces, very high evaporation

heat fluxes, large condenser surfaces and vapor passages. Because of

these factors, the boiling limit becomes the most important operating

limit of these heat pipes. In Fig. 3.7, the curve indicated with

ATc = 100 K assumes that the boiling limitation is reached for the local

evaporating surface when T - Ts > ATc = 100 K. When this occurs, the

porous media at that point is assumed to be completely dry, and no

evaporation takes place. For the curve with the solid circle legend,

this restriction has not been imposed on AT, and the pipe works properly
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with the other conditions being the same. Once the boiling limitation is

reached and evaporating surface becomes dry, the wall temperature at the

heated spot will jump thousands of degrees higher than that of heat

pipes under normal working conditions. From the viewpoint of heat pipe

design, most difficulties arise from the avoidance of the incipience of

boiling in the porous wick of the pipe. Special care must be taken to

properly design the structure of the porous media, to choose suitable

working fluids, and to insure the wettability of the wick and the wall to

increase the boiling limitation.

In addition, the emissivity of the surface and the thickness of the

wall have strong effects on the temperature profile of the wall.

increasing the emissivity will reduce the working temperature, and

therefore the peak wall temperature. The value of f in this numerical

calculation was taken as 0.8. Also, a larger thickness of the wall will

alleviate the temperature jumps at the center of the heated spot, but

this is not practical in many applications.

Figures 3.8 through 3.10 show the numerical results for heat pipes

with localized heat input working under low or moderate temperatures. In

this situation, the heated area is comparatively large, and the heat flux

is comparatively low, so that the temperature jump is not so severe as

that for spot heating heat pipes with high working temperatures.

Figure 3.8 shows the comparison of the numerical results of the

circumferential wall temperature profile with the experimental data from

the paper by Rosenfeld [1987]. The experiment was conducted with a

narrow line heater at the evaporation section of the heat pipe. The

evaporation heat flux relation is also taken from that experiment, with
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qE = a(T - Ts)b

where a = 17330, and b = 1.215.

The agreement between the numerical results and the experimental

data is excellent. The line width surely influences the performance of

the heat pipe. With the width of the heated line becoming larger, the

temperature distribution along the circumferential direction becomes

smoother, as shown in Fig. 3.9. Among the different heating widths, half

heating (sB = W/rR = 0.5) is of special interest in many applications.

Obviously with a uniform input heat flux and a large evaporation heat

transfer coefficient, the temperature profile of the wall beneath the

heated block is nearly smooth, and the working conditions of this half of

the evaporator are nearly the same as that of heat pipes with a uniform

heat input.

Figure 3.10 shows the performance of block heated heat pipes for

different values of the wall thermal conductivity. Unlike the spot

heated heat pipes shown in Fig. 3.5, the thermal conductivity of the wall

has little effect on the temperature distribution. The reason is that,

because of the large boiling heat transfer coefficient, most of the input

heat was absorbed by the evaporating surface beneath the heated block,

and only a small amount of heat is spread to the wall that is not heated.

This is more pronounced as the wall thermal conductivity decreases. For

the working conditions indicated in Fig. 3.10, with k = 394 W/(m-K),

86.2% of the heat passes through the wall under the heated block, while

with k = 45 W/(m-K), 96% of the heat passes through the wall under the

heated block.
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3.5 Conclusions and lemarks

1. The use of a heat pipe is an excellent method to protect a surface

from burning out when the surface is spot heated. The peak wall

temperature is greatly reduced due to the operation of the heat pipe.

The parameters which influence the performance are Q, k, HE, HC, AH, c

and b. For a fixed heat input Q,, larger values of k, AH, HE, HC, or 6

can reduce the peak wall temperature, and larger values of c and the heat

pipe surface area result in a lower working temperature. Because of the

localized heating characteristics of heat pipes, a temperature junp is

inevitable at the center of the heated spot and results in a large AT and

a high qE at the heated location. Special measures must be taken to

increase the boiling limitation of the heat pipe. Otherwise, the

temperature at the heated location will jump intolerably high. More work

needs to be done on the structure of the porous media, the wettability of

the wick and wall, and the vapor flow pattern in the pipe for this

special kind of heat pipe.

2. The numerical results for localized heat input heat pipes working

under low or moderate temperatures agree well with the existing

experimental data and can be used to improve the prediction of heat pipe

performance under localized heating. With a large evaporation heat

transfer coefficient, most of the input heat passes through the wall

under the heated block.
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IV. A NUMERICAL ANALYSIS OF STEFAN PROBLEMS FCR

GENERALIZED MULTI-DIMENSIONAL PHASE-CHANGE STRUCTURES

USING THE ENTHALPY TRANSFORMING MODEL

4.1 Summary

An enthalpy transforming scheme is proposed to convert the energy

equation into a nonlinear equation with the enthalpy, E, being the single

dependent variable. The existing control-volume finite-difference

approach has been modified to apply it to the numerical performance of

Stefan problems. The model has been tested by applying it to a

three-dimensional freezing problem. The numerical results are in good

agreement with those existing in the literature. The model and its

algorithm are further applied to a three-dimensional moving heat source

problem showing that the methodology is capable of handling complicated

phase-change problems with fixed grids.
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4.2 Introduction

Heat flow and diffusion with melting and solidification are of great

importance in many industrial applications. Examples are casting,

welding, thermal en.-rgy storage units, heat pipe start-up from frozen

state, etc. The last two operations were the major motivation for the

present study. Phase-change processes may produce solid and liquid phase

regions which have extremely complex appearances. Also, it is not

possible to predict a priori what the phase-change front evolving in time

will look like. Therefore, exact analytical solutions for these types of

nonlinear problems are available only for some simplified and idealized

systems. Apparently, numerical methods are the only practical method to

handle the general melting and freezing problems providing that we can

successfully trace the moving interface.

The numerical methods used to solve phase-change problems might be

divided into two main groups. The first group is called strong numerical

solutions. The focus here is on applying finite-difference techniques to

the strong formulation of the pro ess, locating fronts and finding

temperature distributions at each time step or employing a transformed

coordinate system to immobilize the moving interfaces (Okada [1984], Ho

and Chen [1986]). These methods are applicable to those processes

involving one or two phases in one space dimension which, with the use of

cumbersome schemes, are being applied to two-dimensional cases as well.

The second group is called weak numerical solutions (Shamsundar and

Sparrow [1975], Crowley [1978], Voller and Cross [1981], Hsiao and Chung
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[1984], Keung [1980], and RsiRo [1984]). These methods aflow i, t~o avoid

paying explicit attention to the nature of the phase-change front. They

appear to have great flexibility and are easily extended to

multi-dimensional problems. In this group, the most important and widely

used method is the enthalpy method. The advantages of the enthalpy

reformulation are that the problem to be solved is formulated in a fixed

region, and no modification of the numerical scheme is necessary to

satisfy the conditions at the moving phase-change interface.

Furthermore, this method is especially suitable both for the problems

where the phase change occurs at a single temperature and the problems

where the phase change occurs over a temperature range.

Most of the previous enthalpy models usually treated the enthalpy as

a dependent variable in addition to the temperature and discretized the

energy equation into a set of equations which contain both E and T. For

the implicit schemes, they actually treated all of the terms containing T

z T(E) as a constant heat source term in the energy equation during

iterations at each time step. This may cause some problems for

convergence when T : T(E) is complicated and physical properties change

significantly as is the case of frozen heat pipe start-up, or when

boundary conditions are severe. Furthermore, when the energy equation

contains a convective term, the previous methods have difficulties in

handling the relationship between the convective and diffusive terms

because of the two dependent variable nature of the equation.

In this section, a simple strategy is proposed to transform the

energy equation into a nonlinear equation with a single dependent
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variable E. Thus, solving a phase-change problem is equivalent to

solving a nonlinear enthalpy equation, and existing algorithms are

readily applicable with some modifications.

146



4.3 Enthalpy Transformation of the Energy Equation

The energy equation governing three-dimensional laminar flow with no

viscous dissipation and with incorporating the continuity equation in the

Cartesian coordinate system (Kays and Crawford [1980], Patankar [1980])

is

O(pE) a a a a T a aT a aT
at + T (puE) + T (pvE) + F (awE) F (ko-) + y(k-) + y (kF)

(4.1)

with the state equation

dE
: c(T) (4.2)

In the case of constant specific heats for each phase, and that the phase

change occurs at a single temperature, we have

Tm + E/cs  E < 0 (solid phase) (4.3)

T Tm 0 < E < H (mushy phase)

Tm + (E - H)/ce E > H (liquid phase)

where Tm is the melting temperature. In the above relation, we have

selected E = 0 to correspond to phase--change materials in their solid

state at temperature Tm.
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The "Kirchoff" temperature (Solomon et al. [1966]) is introduced as

follows

ks(T- Tm) T < Tm

T+ T k()d 0 T = T (4.4)
Tmm

kt(T- Tm) T > Tm

Transforming eq. (4.3) with the definition given in eq. (4.4) results in

k sE/C s  E < 0

T 0 0 < E < H (4.5)

ke(E - H)/ce E > H

and eq. (4.1) becomes

8(pE) + a a a _
2 T 82T + 82T

at T (puE) 'T (pvE) (pwE)(46)at (PE  Oy2  dz2

Now, let us introduce an enthalpy function as follows

T = r(E)E + S(E) (4.7)

For the phase change occurring at a single temperature, we have

ks/C s  E < 0

r(E) 0 0 < E < H (4.8)

k I/cl E > H
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and

E O

S(E) 0 0 < E < H (4.9)

-Hke/C E > R

Upon substituting eq. (4.7) into eq. (4.6) and noticing that, for

example,

2T a d(rE +s) 22S

2 [- -J F. I .(PE) + ±X2

we have

8~E + 0+ 0 O2PE O a~fE +O~2Eat xppE) + a + a=~ r + 82E+ 8 + P  (4.10)

at -N (puE) v (PVE) T, (pWE) Ox - T z

with

d2S _ 2S 02
s o s + r = r(E) , and S = S(E).

The energy equation has been transformed into a nonlinear equation

with single dependent E. The nonlinearity of the phase-change problem is

evident in the above equation.

In the liquid region away from the moving front as indicated in the

numerical domain of Fig. 4.1, eq. (4.10) reduces to the normal linear

energy equation as
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d(PIE) a a a OT a 8 T +
+ (peuE) ,iPvE (pjwE) - (k1 y-) + Ti(ke } jk

ap +a u)+ + w + +

t ax_ a d x) Sj ~ a

OT
Y-z) (4.11)

Also, in the solid region eq. (4.10) reduces to

a(P sE) + a ( ps uE) + a( p s v E) +  d (Ps WE) ,-d(ksOI) +x a -(k s d) +y d -z ( k s -T)

(4.12)

In the moving front region (the region between the two dashed lines

as indicated in Fig. (4.1), eq. (4.10) is nonli-ear. This agrees with

the well-known fact that the nonlinearity of phase-change problems is due

to the existence of a moving interface (Ozisik [1980]).

The method proposed is not restricted to the forms for F(E) and S(E)

given by eq. (4.8) and eq. (4.9). With different conditions and

assumptions, they have different expressions. For example, if phase

changes occur over a temperature range (such as alloys), as shown in Fig.

4.2, with constant specific heats for each phase, we have

F E/cs  E<O (solid phase)

T - T1  ATE/(H + cm AT) O<E<I+c mAT (mushy phase) (4.13)

E/ce-[H+(cm-c)AT]/ce E>H+c mAT (liquid phase)

Here, we have selected E = 0 to correspond to phase-change materials

in their solid state at temperature T1. Then Tm = (TI+T 2 )/2 is defined

as the melting temperature, AT : T2 - T1 is the melting temperature
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range, and Cm is the specific heat for the mushy phase.

The "Kirchoff" temperature is introduced as

ks (T-T1) T < T1

T j 1T k(q) diq km (T-T1) T1 < T < T2  (4.14)

k, (T-T1) T > T 2

where km is the thermal conductivity for the mushy phase. The

transformation procedure is the same as that of phase change at a single

temperature, and the resulting equation is still eq. (4.10) with

different expressions for F(E) and S(E).

ks/c s  E O

F(E) = kmAT/(H+cm AT) O<E<H+cmAT (4.15)

ke/ci E>H+cmAT

0 E<0

S(E) = 0 O<E<I+c AT (4.16)m

- ke[H+(cm-ce)AT ]/cj E>H cmAT

In the above relations for the mushy region, a linear change was

assumed. In real systems, they may take more complicated forms.

However, this is outside the scope of this report.
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4.4 Numerical Scheme

4.4.1 Phase change without convective terms

To demonstrate the methodology, let us consider a phase-change

problem in one space dimension. In this case, eq. (4.10) reduces to

OE = 82 S+ (4.17)p - - (FE) +~

t X2 X2

with r = r(E) and S = S(E)

The discretization of the above equation employs the control-volume

finite-difference approach described by Patankar [1980]. In this

methodology, the discretization equations are obtained by applying

conservation laws over finite size control volumes surrounding the grid

nodes, and integrating the equation over the control volumes, i.e.

JJJ P OE dV = Jff ( 2(rE) , a2s ) dV (4.18)
AV At AV x2 8x2

Using a fully implicit scheme and referring to Fig. 4.3, we have

JJJpE dV pAx E -q (4.19)

AV at At

a2 arE arE rE EE - r PEP r pE p - r WEW
Jif (rE)dV ( are)e ( arE )_ E - (4.20)

Vax2 axe (xx)w

N dV =4 (4.21)
AV __2(b)e (b)w
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Thus

apEp = aEEE + a.EW + b (4.22)

with Ep denoting the old value of E at grid point P

rE r pAxEpO SE - Sp SP - SY
a E = a. a_ b= + - (4.22a)

(6 e - At (bX) (6x)w

and

a __rp rp + pAx (4.22b)
S (bx) (6x): At

4.4.2 Phase change with convective terms

In this case, a one space dimensional problem will also be

considered as a demonstrative example. The governing equation is

apE + a= a2 + 02S (4.23)
at F(puE) -(rE) Ox2

Since the total flux in the above equation J = puE - F(FE) is different

from the conventional total flux J = pu - r Px, the usual method to

obtain the convection-diffusion expression is not applicable. Also, the

coefficient r is small in most cases. To handle convection-diffusion

situations and ensure physically realistic solutions, we employed a

scheme similar to the upwind scheme. The discretization equation is

written as

apEp aEEE 4 aVE W + b (4.24)

156



where

Ax
0

ap- apE + ap, + At PP

a. r ED e +max [-F el 0 ], aPE = p D e+ max [P., 01

a. rVw+ max [F., 0], apW P D w + max [F W, 0]

POAXEO SE- S~ S S,

At + Qx) e (ebx)w

D e; l/(5x)e, Fe =(Pu),l Ow =l/(6x)w, Fw (POW~

The greater of a and b is given by max ab], Eo denotes the old

value of E at grid point P, and p0denotes the old value of p at grid

point P. Clearly, no special treatment is need'od for solving the

velocity using momentum equations.

4.4.3 Phase change for multi-dimensional problems

Hlaving described the discretization equation for one space

dimensional problems, we can now writ~e a discretization equation based on

the general differential equation (4.10) for multi dimensional problem,,.

with E, V5 N, 5, T, and B representing the "east," "west," "north.'

"south," "top," and "bottom" neighbors of node P, respectively. The

corresponding discretization equation is

aPEP=aF A I a WE V aN EN +a S E + aT ET aBEB +b (4.25)

wh '

Ax AY Az oa PE apw , aPN 'a iapU3  a PT AtPI
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aE 7 rD e + max [-Fe, 0], apE rpDe + max [-Fe, 0]

a. = FVD w + max [Fw, 0], ap, pOW + max [F , 0]

a, = rNDn + max [-Fn, 0], apN P Dn + max [-Fn, 0]

as = rsDs + max [Fs, 0], aps :rpDs + max [Fs, O]

aT = PTDt + max [-Ft, 0], apT = rpDt + max [-Ft, 0]

aB = rBDb + max [Fb, 0], apB = rpDb + max [Fb, 0]
AxAyAzp o0 D

b : P Ep + D (SE-Sp) - Dw(Sp-Sy) + Dn(SNSp) -

At

Ds(Sp-Ss) + Dt(ST-Sp) - Db(SP-SB)

The flow rates and conductances are defined as

Fe : (Pu)e AyAz De = AyLIZ

F := (Pu)w AyAz Dw - AYAZ
w w w
F: p) zx-AzAx (4.26)

Fn = (PV)n AzAx On )n

Fs = (Pv)s AzAx Ds  AzAx

Ft = (pw)t AxAy Dt - AxAy

(6Z~t

Fb = (Pw)b AxAy Db : AxAy

bz~y

Because of the nonlinearity of the above equation and the implicit

nature of the scheme, iterations are needed at each time step. This

procedure is the same as that which solves a nonlinear equation, and is

as follows:
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1) Let Ek  represent the E field as it exists at the beginning of the

kth iteration.

2) From these values, calculate tentative values of F and S according

to their relations with E, using eqs. (4.8) and (4.9), or eqs.

(4.15) and (4.16).

3) Solve the nominally linear set of discretization equations to get.

new values of Ek+l.

4) Return to step 1 and repeat the process until further iterations

cease to produce any significant change in the values of E.
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4.5 Application of the lethodology to the Example Problems

To demonstrate the present scheme, the proposed methodology has been

applied to two separate phase-change problems. The first is a

three-dimensional freezing problem, and the other is a three-dimensional

moving heat source problem. In the two problems considered herein, the

thermal physical properties such as k and C are assumed to be constant in

each phase but may differ among the solid, mushy and liquid phases, while

the density, p, is considered the same for each phase.

4.5.1 The three-dimensional freezing problem

Consider a liquid initially at its melting temperature, Tm, in a bar

with a uniform square cross section and adiabatic ends as shown in Fig.

4.4a. The surface is suddenly exposed to a uniform wall temperature

below the fusion temperature and freezing takes place immediately.

Because of the symmetry of the geometry, only a quarter of the bar is

considered as shown in Fig. 4.4b. To facilitate comparison, the

dimensionless parameters are chosen to be the same as those used by Hsiao

and Chung [1984], i.e.

00 = (Ti - Tw) / (Tm - Tw) = 1 and St = cs(Tm - T) / H= 1.

At the middle plane of the bar in the z-direction, the temperature

distribution is two-dimensional. Figure 4.5 shows the interface position

as a function of time along the diagonal for the present

three-dimensional modeling. The two-dimensional results given by Hsiao

and Chung [1984] using the equivalent heat capacity model and given by
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Crowley [1978] using the enthalpy model are also included in the same

figure. The agreement among these solutions is excellent.

Consider the same problem with differeat initial conditions and

physical properties. The dimensionless paramters are ke/ks = .9,

al/as = 0.9, 00 = (Ti - Tw)/(Tm - Tw) = 9/7, and St z cs(T m - Tw)/ z 2.

Figure 4.6 shows the interface position as a function of time along the

diagonal. Also included in Fig. 4.6 are solutions obtained by Hsiao and

Chung [1984], and by Keung [1980]. Again, the present three-dimensional

solution agrees well with the results of those two-dimensional studies.

We base the above calculation on the phase change which occurs at a

single temperature. Assuming that the phase change takes place over a

temperature range of AT = 20 K, the same calculation is conducted, as

also shown in Fig. 4.6. Plainly, the present model is insensitive to the

phase-change temperature range. If the temperature range is small

enough, we can expect the same result as that of the single temperature

case. This is the case for the present model. The calculation is

conducted with AT = 2 K, and the result is almost identical with that of

the single temperature case in Fig. 4.6.

The grid size employed in the above two cases is 20 x 20 x 30, and

the discretization equations are solved by the Gauss-Seidel method. The

physical properties of the mushy phase are taken as the average of those

of the solid and liquid phaseq. The time step limit is not encountered
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in the calculations. The dimensionless time steps can be on the order of

0.1, and real time steps can be as large as several days.

4.5.2 Three-dimensional phase-change problem with moving heat source

As indicated in Fig. 4.7, a source of heat moves over the surface of

the plate with speed U. Because of intense heating, the material under

the heat source melts. It is important to determine the molten depth for

the given velocity, heat source power and its diameter, as well as the

material properties.

With the coordinates fixed at the center of the moving heat source,

eq. (4.10) is applicable for this problem. To simulate the circular heat

source, the equation has been transformed into the form for the

cylindrical-polar coordinate system.

The governing equation is

d(Ep) + 1 d(rvrPE)+ 1 0(vpE) 1 [ 8(rE) + 1 a[ 1 (pE)

-t r ar r o0 r rrr I r TO Ir -0
8 [o(FE)] + P (4.27)

where

P s 1 8 1S as 2S
r Fr r O-l + r O-r YO_ _z'

vr  I-cosO , V0  UsinO
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r = P(E) , S S(E) are given by eqs. (4.8) and (4.9),

respectively.

The initial and boundary conditions are as follows

Ei  c, (Ti -T) t =0

q q qh z 20, r < Rh

q 0 z 0 , rRh

q 0 z b

0 0
E E r -R , 90 ( 0 < 90

a(FE + S) : 0 r.2R o , 900 < 0 < 2700

Ar

The radius Ro must be sufficiently large such that the region r >
o 0

R0, -90 < 0 < 90 is unaffected by the moving heat source. Also, the

last boundary condition implies that the upwind scheme is used, and the

diffusive term is neglected for the outflow boundary. The calculation

proceeds with grid size 32 x 50 x 12 and time step 0.1 second. Other

parameters are

U 2 0.3 m/s, as /a = 1.44, St c Cs(Tm - Ti)/l 1 0.126

Rh 2 0.005 m, Ro - 0.25 m, Q - 11.80 kW
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Figure 4.8 shows isotherms of the dimensionless temperature 0d = (T

- T )/ (Tm - Ti) for t = 0.1 second at the x - x plane indicated in Fig.

4.7 (b) (i.e., 0 = 00, and 0 = 1800). The center of the heat source is

located at x = 0.0. The solid line labelled with 0 indicates the melting

front at this time, while the dashed line labelled with -1 is a boundary

beyond which the temperature field is unaffected by the moving heat

source. After about 0.5 second, the steady-state condition is reached.

Figure 4.9 shows the steady-state isotherms of the dimensionless

temperature at the same plane. The melting front line becomes flat in

the portion of x < 0.
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4.6 Conclusions

The enthalpy transforming model proposed in this section proves to

be capable of handling complicated phase-change problems occurring both

at a single temperature and a temperature range with fixed grids. Due to

the one dependent variable nature of the transformed equation, the

convection and diffusion situations can be handled with appropriate

algorithms. We have comparea the numerical results existing in the

literature with good agreement, showing that the present model can

properly predict the phase-change processes. The advantage of this model

based on enthalpy is that it allows us to avoid paying explicit attention

to the nature of the phase-change front and can be extended to

complicated multi-dimensional problems with convective terms without

involving cumbersome mathematical schemes.
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V. TIERAL PIOTECTION FlOZ INTENSE LOCALIZED MOVING HEAT

FLUXES USING PEASE-CHANGE EATEIIALS

5.1 Summary

Various technologies which protect a wall from being burned out by

an intense localized moving heat source have been reviewed, and a

solution to this problem is proposed in which a phase-change material

(PCI) is placed underneath the wall to absorb the high heat flux. The

three-dimensional melting problem is nondimensionalized and modelled with

a new enthalpy transforming scheme. The numerical results show that the

proposed solution reduces the peak wall temperature significantly. The

method of coating the PCX on the wall surface is also employed, which can

maintain the surface temperature below the melting temperature of the

PCX.
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5.2 Introduction

Heat Transfer in a body resulting from a moving heat source is a

well-known heat transfer problem and has had broad applications in the

fields of welding, laser and electron beam surface processing (Eckert and

Drake [1972], Festa et al. [1988]), etc. In these cases, a surface is

subjected to a localized heat input, and the incoming heat flux moves

relatively to the surface. The interest for the above applications is

how to heat the surface effectively. However, in some applications a

surface is hit by a moving high intensity heat source, as shown in Fig.

5.1. The major concern here is how to protect the surface from being

burned out by the moving heat flux. This is indeed a problem of concern

in laser thermal threats and re-entry situations and has been one of the

motivations of the present study.

The methods used to protect surfaces from being burned out by a high

heat flux are usually ablation and heat pipe technologies. lost of the

previous studies on ablation concentrated on a stationary heat input with

a large heating area. The major concern for this problem is the total

energy which must be absorbed during a given time period. In the

ablation technology which is used in missile re-entry situations, the

body surface is coated with a solid material which is exposed to the high

heat flux and is allowed to melt and blow away. Thus, a large amount of

the incoming heat is expended in melting the material rather than being

conducted into the interior of the vehicle, so that the temperature of

the vehicle surface is reduced. The thickness of the coated material

must be greater than the melted thickness during this time period. The
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FIG. 5.1 A WALL SURFACE ,ITBJECT TO AN INTENSE

LOCALIZED MOVING HEAT SOURCE.
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drawback of this technology is that once the coated material is melted,

it is immediately blown away. The coated surface can be used only once,

and for the next mission we must coat the surface again. For vehicles

which have frequent missions such as airplanes, this situation may be

intolerable. Moreover, high speed vehicles require a smooth surface to

reduce the flow resistance and to reject the incoming heat; coated or

ablated surfaces may have difficulties in reaching this goal.

Nevertheless, due to the simplicity and effectiveness of this method, it

still remains an alternative to protecting the surface and may be adopted

to the case of a moving heat source.

Heat pipe technology is a good means of protecting a surface from

attack by a high heat flux. For the present moving heat source problem,

however, the heat pipe may only work under melting or free molecular

conditions. Furthermore, a heat pipe is an integral vessel which cannot

allow vapor leakage, which means that the present manufacturing

technology would not be easily adapted to vehicles that have a large

surface area. For these reasons, the adoption of heat pipe technology

for the present problem is not economical.

Recently, the study of phase-change materials is active due to

applications to space-based power plants and the utilization of solar

energy. Phase-change materials (PCX) have a large melting heat, so it is

an efficient way to absorb the heat energy during the time period when

the materials are subject to heat input and to release it afterward at a

relatively constant temperature. It is advantageous to incorporate the

merits of the above technologies and propose another alternative to
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protect the surface from attack by a high heat flux for the present

problem, as shown in Fig. 5.2. There, the incoming heat input moves

along the surface with speed U and the heat is conducted through the

outside wall to the PCI. The PCI beneath the surface melts and absorbs a

large amount of the incoming heat. Because of the large melting latent

heat of the PCI and the constant melting temperature Tm, the peak wall

temperature will be maintained at a temperature moderately higher than

Tm.  With a low or moderate Tm, the reduction of the peak wall

temperature is evident. The di-,iding sheet, the soft insulati*g

material, and the supporting plate may be used to prevent the separation

of the PCI from the surface wall during the melting process, and to

prevent the inc(,ming heat from being conducted into the cabin. Because

the density of liquid PCI is different from that of solid PCI, the solid

PCI tends to separate from the outside wall, or to form voids near the

wall, which reduces the heat transfer into the PCI. If the thickness of

the PCI is thin and the density difference is not large, this situation

will not be very severe.

The method proposed above imposes few difficulties on the present

manufacturing technology and might also be used to cool the leading edges

of space vehicles in re-entry situations. Since the re-entry time is

short, a moderate thickness of the PCI will greatly reduce the

temperature jump at the leading edges.

Section 5.3 gives a nume'ical analysis of this problem and discusses

the important parameters to protect surfaces from an intense localized

moving heat flux using PCI.
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INCOMING HEAT
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PCM (LIQUID) #111111 iI i #cIMtOi

DIVIDING SHEET

INNER SUPPORTING PLATE SPONGY INSULATING MATERIAL

FIG. 5.2 CONFIGURATION TO PROTECT SURFACES FROM ATTACK
BY HIGH HEAT FLUXES.
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5.3 Analysis of Phase Change with a loving Meat Source

The present problem mentioned previously is a three-dimensional

phase-change problem with a moving heat source. Since the focus here is

on space applications and the PCI thickness is comparatively thin, the

natural convection due to gravity will not be considered. Also, since

the layer of the PCI is thin, the influence of the density change between

the solid and the liquid phases is expected to be small, and will be

ignored.

In a Cartesian coordinate system (x', y', z') fixed at the outside

wall as shown in Fig. 5.3, the heat source moves relatively to the plate

with speed U on the surface. The appropriate energy equation is (Kays

and Crawford [1980])

PE (k N_') + (k Ty) + (k -, ) (5.1)

where the relation between E and T is given by the equation of state,

dE= c. This equation is applicable to the three different regions,

T
namely, the wall, the solid PCI, and the liquid PCI with different

relations between the enthalpy E, the temperature T, and the appropriate

physical properties.

An analysis in a fixed coordinate system is difficult for this

problem. It is convenient to study it in a moving coordinate system

where the origin is fixed at the heated spot. Imagine an observer riding
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t INCOMING HEAT INPUT

Rh " 
OUTSIDE WALL

/ h

Sq-o PCM

FIG. 5.3 DESCRIPTION OF DIFFERENT COORDINATE
SYSTEMS AND THEIR RELATIONSHIPS.
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along with the incoming heat beam. The outside wall and the PCX will

travel by at the same speed - U. If we fix a moving coordinate system

(x, y, z) to the center of the beam, the system will appear in reference

to the fixed coordinate system as shown in Fig. 5.3.

In the moving coordinate system, the problem becomes a convective

and diffusive heat transfer problem. The governing equation according to

Kays and Crawford [1980] is

P DE (k) +d(kT) 8 (k (5.2)
Dt -ax ax 8 - ay -z -z

With u = -U, v = w = 0, we have

PDE= PE - pU E (5.3)

Dt

Equation (5.2) then becomes

aE PU aE a (k aT) a (k& T) k 0') (5.4)

The second term on the left-hand side of the equation is a convective

term, while the terms on the right-hand side are diffusive terms.

The relations between the variables of the two coordinate systems

are evident, i.e., y = yf, z - z' and x =x' - f U dt. When U is a

constant, x = x - Ut.
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In the case of constant physical properties for the wall, the solid

PCM and the liquid PCI, the phase change occurs at a single temperature.

Equation (5.4) can be written for each region as

Cw OT Cw uOT T 2T 82T (wall)

w w

Cs T Cs u&T 2T 2T 02T (solid PCM) (5.5)

S S

CI OT CI U T  02T  +2T d2T (liquid PCM)

where Cw  c wPw , Cs  c sps and C I cepe. The initial ani boundary

conditions are

t = 0, T =Ti 0 < z < h, - c < x com, - a < y < aD

t > 0

OT
kw a q z O, x2 +y 2 ( Rh

kw = UET 4 , z 20, 1 2 Y2 Rh

q q16:1 Z = 6, - C < X " O, < y < O (5.6)

0 0, z z h, -i< x < C, -g < y < O
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T = Ti, 0 < z < h, Ixi - ®, lyl - O

u = U, w = v = 0, 0 < z < h, -® < x < m , < y < c

At the liquid and solid interface within the PCI, we have

T5  Te TTs :T Tm

-k + k v (5.7)
n- sn nP

To reduce the number of parameters that have to be specified for the

numerical solutions, the following dimensionless variables are

introduced:

Sy Z T T- T. CU
XZ1 w R

X 2 , y ,7 , -9 __, j h

Rh Rh  Rh  Tm  Ti  kw

t wk (5.8)
CwRh 2

Equations (5.5-5.7) are nondimensionalized as

* * * * *

OT * AT 02T 02T 02T
- ----- - + -- 2 +(a

at x ax Oy a

* Ck kw  * *

Us k5 * 02T 02T' 02TC k w O C k U2 4 (solid PCX) (5.9)

w s Ot w s Ox a 0x Oz

182



1 v 8T* It wv OT L92T 82T 02T (liquid PCI)

*t =0, T =0, 0 < z < h , - < x <W, -M <~ y <

t > 0

OT q Rhz *=, 0 1*2+ *2 1

8z (TS-Ti) kw

8T Rh (Tm - T,)3 Of(T* + Ti 4 Z 0, X* + Y* > 1 (5.10)

0'6 qj-, Zw( bKuO,<X -inM < K <O

OTz

T* 0, 0 z < h Ix 1 J) y I -D

u U ,v = w =0, 0 < z < h < - x <~ <,-w y < OD

aAt the interface of the liquid and solid in the PCI

41

Ts = Tt 1

c s (T m - T i) t OTI k s Or S C S Rh
H kw on w On - k
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The independent dimensionless parameters in addition to those in eq.

(5.8) above are

Cs C I ks kI qh Rh 6 h Rh (Tm - Ti)3

C w  Cw  k- k- (Tm - Ti) kwk

T i  cs (Tm - Ti)

T -T. Hm I

cmiigCwU Rh qh Rh

Upon combining with , we get a new dimensionless
kw (Tm - T kw
U Cw (Tm - Ti)

parameter _____(T_____Ti)_ which may be used to replace the
q h

* * *

dimensionless number CwURhI kw. Also, since h = 6 + 6p, the* *

independent variable h may be replaced by 6 p. Thus, we have

* * * * * * *

T f(Nv, Nq, St, t ,Nr, 't, Csw , Cw , Ktw , Ksw , 6 6p)

(5.12)

where T = (T - Ti)/(Tm - Ti)

Nv = UCw (Tm - Ti)/q h

Nq = qh Rh/ (Tm - Ti) kw

St = cs (Tm - Ti)/H

t = 1 w t/(Cw Rh2)

Nr = Rh (Tm - Ti)3 ' E/ kw

Nt = Ti/(Tm - Ti)

Csw Cs/Cw

Ctw CI/C w

sw s w/kw
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x /Rn

* y =y/Rh

z z/R h
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5.4 Numerical lodel and Solution Procedure

This problem is nonlinear due to the moving front, so that exact

analytical solutions for this type of nonlinear problems are available

only for some simplified and idealized systems. Numerical methods appear

to be the only practical approach for handling this three-dimensional

melting problem with a moving heat source.

The numerical methods used to solve phase-change problems might be

divided into two main groups. The first group is called strong numerical

solutions; examples are given by Okada [1984], and Ho and Chen [1986].

These methods are only applicable to processes involving one or two space

dimensions. The second group is called weak numerical solutions

(Shamsunder and Sparrow [1975], Voller and Cross [1981], Cao et al.

[1988], Solomon et al. [1986]). These methods allow us to avoid paying

explicit attention to the nature of the phase-change front. Recently,

Cao et al. [1988] proposed a new enthalpy transforming model which starts

from eq. (5.4) and transforms the equation into a nonlinear equation with

a single dependent variable E. The existing algorithms were modified to

facilitate the numerical calculations. The numerical schemes are

flexible and can handle three-dimensional problems without difficulty.

To simulate the circular heat source, eq. (5.4) needs to be

transformed into the form for the cylindrical coordinate system.

Referring to Fig. 5.4 and introducing x = r cos 0, y = r sin 0, we get
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WALL SURFACE
MOLTENPCM R_ l h WALL

m / -- SOLID PCM 41, I

z

(a) Side-View of the Computational Domain of the

WALL - PCM Module.

x -U

(b) Top--View of the Computational Domain of the

WALL - PCM Module.

F'IG. 54 PICTORIAL DESCRIPTION OF TIHE COMPUTATIONAL DOMAIN FOR
nIHE WALtj - PCM MODULE.
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aE a8E OE 1 0 T , r 0 rOE+ VrP A_+ PVOE_= 1 (rk 'T + I (k T + a (k OT ) (5.13)

with vr U -u cos 0, vO = U sin 0, vz = 0.

Incorporating the continuity equation

(r p v 1 a(vOP) ap (5.14)1r 0 r d r + r-Yv + :0

we obtain

OpE 1 0(rvrpE) 1 O(vopE) 1 a ( rkT ) 1 a kOT
Ot+r Or +r 800 r Or r-.T + r - =- + -- T

a (k ) (5.15)

with the state equation dE = c(T). Following the analysis given by Cao
dT

et al. [1988], the transforming method is described as follows.

In the case of constant specific heats for each phase and that the

phase change occurs at a single temperature, the relation between

temperature and enthalpy can be expressed as follows

Tm + E/cs  E < 0 (solid phase)

T Tm 0 < E < 1 (mushy phase) (5.16)

Tm + (E - H)/cj E > H (liquid phase)
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Here, E = 0 has been selected to correspond to phase-change materials in

their solid state at temperature Tm.

The "Kirchoff" temperature is introduced as

ks (T - Tn) T < Tm

T+ = 1T k(r/) drn = 0T T (5.17)mm

k1 (T- Tm) T > Tm

Transforming eq. (5.16) with the definition given in eq. (5.17) results

in

ks E/cs  E < 0

T = 0 0 < E < H (5.18)

kt (E- H)/c E> H

An enthalpy function is introduced as follows

T = r(E) E , S(E) (5.19)

Eq. (5.15) is transformed into a nonlinear equation with a single

dependent variable E.
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a(Ep) 1 (rvrp E) 1 a(vOPE) 1 a ( r a(rE) 1 8 (1 a(r)

at r r r - r

S (arE) + P (5.20)

where

p 1 a [r aS ] 1 1 aS ] 2S
r Fr [r TO- YI

v = -U cos 0, vo = U sin 0

Is/Cs  E < 0

r =r(E) 0 < E < H (5.21)

ke/ce E > H

and

0 E< 0

s = S(E) 0 0 < F < B (5.22)

Hk /ce E > H

For the wall, no phase change occurs and therefore

E = cwT, r - kw/cw, and S = 0 (5.23)
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with eq. (5.20) still being applicable.

The initial and boundary conditions for the numerical domain in Fig. 5.4

are as follows:

t 0

E = c WTi  0 < z < , 0 < r < co, 0 < 0 < 3600

E = cs (Ti - Tn) 6 < z < h, 0 < r < L, 0 < 0 < 3600

t >0

k w OE

-- T = q z = 0, r < Rh, 0 < 0 < 3600
w

w Oti
- N= ac (E/cW)4  z = 0, r > Rh, 0 < 0 < 3600
w

q6+= qlg_ z = b, 0 < r < ®, 0 < 0 < 3600

q = 0 z = h, 0 < r < m, 0 < 0 < 3600

E = F 0 < z < h, r = Ro, -900 < 0 < 900

aE
T- = 0 0 < z < 6, r = Ro, 900 < 0 < 2700

8(rE + S)
r = 0 6 < z < h, r = Ro, 900 < 0 < 2700

The radius R0  must be sufficiently large such that the region r >

Ro, -900 < 0 < 900 is unaffected by the moving heat source. The last two

boundary conditions imply that the upwind scheme is used, and the

diffusive term is neglected for the outflow boundary.

Equation (5.20) is discretized with the numerical scheme proposed by

Cao et al. [1988], which is based on the control-volume finite-difference

approach described by Patankar [1980]. The general three-dimensional
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discretization equation for the phase-change problem with a fully

implicit scheme in the cylindrical coordinate system is

aPEP = aEE E +a EY+ aNEN + asE S + aTET + aEEE + b (5.24)

where

ap = apE + apW + apN + aps + apB + apT +

aE = rEDe + max [-Fe, 0], ape = rpDe + max [-Fel 01

a. = r'Dw + max [Fw, 0], a,, = rPDw + max [FW, 0]

a, = rNDn + aaA [- n, 0], aPN = rpDn + max [-Fn , 0]

aS = rsDs + max [Fs, 0], aps = rpDs + max [Fs, 01

aT = rTDt + max [-Ft, 0], aPT = r pDt + max [-Ft, 01

aB = rBDb + max [Fb, 0], aPB = rPDb + max [Fb, 0]
A Vp

b = __E + De(SE- Sp) - Dw(SP - SW) + Dn(SN - Sp) - Ds(S P - SS)+
At

Dt(ST - Sp) - Db(SP - S)

where AV is the volume of the control volume, AO Az (rn + rs)/2, the

greater of a and b is given by max [a,b], Eo denotes the old value (at
p

time t) of E at grid point p, and po denotes the old value of p at grid
p

point p. The flow rates and conductances are defined as

Fe = (pvO) e ArAz, De =r ArAz

e Ge e e(e5G)e

Fw - (pvo) w ArAz, Ow = ArAz

r w 'bo9
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n = (Pvr)n AzrnAO, Dn = 
AzrAO

(6r) n

Fs = (Pvr) s AzrsAO, Ds  AzrAO

(br) s

r AOAr
Ft = (pvz)t rpAOAr, D =P

p 't 7-p)j

r AOAr
Fb=(pv) rpAOAr, Db = P

zb b

Because of the nonlinearity of the above equation and the implicit

nature of the scheme, iterations are needed at each time step. This

procedure is the same as those which solve a normal nonlinear equation.

Since the dimensionless parameters in the last section are

independent of the coordinate system, eq. (5.12) is still applicable to

the problem in the cylindrical coordinate system of this section.
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5.5 Nunerical lesults and Discussion

The discretization equations above are solved with the Gauss-Seidel

method. The grid size employed is 32 x 30 x 20 with the grid size near

the wall surface being finer. To check the validity of the computer

program, the calculation has been made with a moving heat source without

phase change, i.e., a pure wall without PCI, and the steady-state surface

temperature along the X-X plane (the X-X plane corresponds to the plane

defined by 0 = 00 and 0 = 1800 in cylindrical coordinates or y = 0 in

Cartesian coordinates) was compared with the analytical result of a point

source moving on the surface of a semi-infinite medium by Eckert and

Drake [1972], as shown in Fig. 5.5. The steady-state analytical result

has the form

T - Ti = (Q/2rkwr)e (U/2%) (r + x)

The above equation was obtained from a moving Cartesian coordinate

system (x, y, z) with the point heat source at the origin and r

Vx2 + y2 + z2 .

The discrepancy between the two results near x = 0 is due to the

nature of the heat source that was modeled in each case. The analytical

result has an infinitesimal heat source at x = 0, while the numerical one

has a heat source of finite radius Rh. Considering this, the accuracy of

the numerical results is very good. The numerical results with radiation

= 1) into space for the surface other than the heated spot is also
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included in Fig. 5.5. The radiation plays no significant role in the

temperature distribution of the wall near the heat source, and therefore

will not be included in the next discussion, and the radiation parameters

Nr and Nt will be dropped.

Figure 5.6 shows the general temperature distribution trend on the

surface as a three-dimensional plot. The temperature falls off sharply

in the portion of x > 0, while it falls off gradually for x < 0. Also,

the symmetry of the temperature distribution to the X-X plane indicated

in Fig. 5.4 is evident. Therefore, the representation of the temperature

distributions will focus on the X-X plane for simplicity.

5.5.1 Moving heat source without phase change

As a first step, a pure wall without PCI is studied. In this

situation, eq. (5.12) reduces to

T f(Nv, NQ, t , 6 , x , y , z ) (5.26)

Since the problem is now independent of Tm, (Tm- Ti) is chosen as unity

for convenience.

Figure 5.7 shows the variation of the steady-state wall surface

temperature with different values of N v. A larger Nv reduces the peak

wall temperature significantly, while a small Nv may result in an

intolerably high peak wall temperature. The dimensionless number NQ has

an opposite effect on the wall temperature, as shown in Fig. 5.8. A

smaller Nq corresponds to a lower peak wall temperature, while a larger
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Nq corresponds to a higher peak wall temperature. We can conclude that
Q,

with a certain b , when Nv is large enough or Nq is small enough, the

peak wall temperature is low and the wall does not need to be protected.

When Nv  is small or Nq is large, something must be done to protect the

wall, otherwise the wall will be burned out. Also, a larger 6 has the

effect of relieving the peak wall temperature, but is often not practical

in space applications.

5.5.2 Moving heat source with PCI underneath the wall

As mentioned before, one of the alternatives of protecting the wall

is to put the PCI beneath the wall as shown in Figs. 5.2 and 5.4. Figure
*

5.9 shows the numerical isotherms of the dimensionless temperature T

(T - Ti)/ (Tm Ti) for t = 0.1 second along the X-X plane. Other

parameters are Nv  1.2, N 60, St = 0.001, Csw= 0.94, Cew= 1.38, Kew

- sw = 0.65, 6 0.51, and h 1.45. The center of the heat source is

located at x = 0.0. The solid line labelled with 1.0 indicates the

melting front at this time. After about 0.5 second, the steady-state

condition is reached. Figure 5.10 shows the corresponding steady-state

isotherms of the dimensionless temperature at the same plane. The

melting front is also labelled with 1.0.

Figure 5.11 shows the steady state wall surface temperature along

the X-X plane with different Stefan numbers, St = cs(Tm - Ti)/H. Also

shown in the figure is that of a pure wall (without PCM) having the same

weight per unit surface area as that of the wall-PCI module. The

reduction of the peak wall temperature is significant. In the figure,
*

6 m = 6mlRh is the dimensionless maximum melting front depth, where bm is
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the maximum melting front depth from the wall surface corresponding to

the steady state.

The dimensionless wall thickness b has a significant influence on
*

the temperature distribution. With a smaller 6 the reduction of the

peak wall temperature is more evident, as shown in Fig. 5.12.

Like the moving heat source problem without phase change, when Nv is

small enough and N is large enough the dimensionless temperature will

become high, as shown in Fig. 5.13. The case with Nv = 0.3 and N : 60

has a peak wall temperature almost four times as high as that with Nv =

2.4 and N = 30. In this situation, perhaps we have to resort to another

alternative.

5.5.3 loving heat source with PCX coated on the surface

The configuration of this technology of protecting the surface is

illustrated in Fig. 5.14. The numerical procedure is similar to that

with PCX beneath the wall. The calculation is conducted with three

different Stefan numbers and the results are shown in Fig. 5.15. The

liquid phase in the numerical domain is assumed not to be blown away in

this situation. Also shown in the rigure is the temperature distribution

of a pure plate (without PCM) having the same weight per unit surface

area as that of the PCI-wall module indicated in Fig. 5.14. It is

evident that the dimensionless temperature of the wall surface with PCX

coated on it has no way to exceed one, which means that the wall surface

terperature will be less than Tm, provided than the maximum melting front

depth is less that the thickness of the PCI coat on the surface.

204



z

00

LJ C; 10 LO

TK 60 1 w
<0D

0 E
C'~Q( <

0 0) 01

20



<~ 0
0 0 z
(0 A

zz
LC)-

0 i

zz 2:

__I j

SIL

SLi
* I-

6 L

2, * 0'

206



MOLTEN SOLID PCM

I -TV

Y q=O WAL SURFACE

z WALL

(a) Side-View of the Computational Domain of the

PCM - WALL Module.

0

x 0 -x -
Rh

(b) Top-View of the Computational Domain of the

PCM - WALL Module.

FIG. 5,14 PICTORIAL DESCRIPTION OF THE COMPUTATIONAL DOMAIN FOR
THE PCM - WALL MODULE.
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5.6 Conclusions and lemarks

If a wall surface is subject to an intense moving heat flux, and

with a large N and a small Nv, the surface is prone to be burned out

unless some measure is taken to protect it. The use of PCX proves to be

a good means of protecting the surface in this respect. One way to

protect the surface is to put the PCI underneath the wall. This method
,

is more efficient with smaller St and 6 . With NQ increasing and Nv

decreasing further, the method of coating the PCX on the surface is

needed to protect the surface. In this situation, the wall surface

temperature will be less than Tm provided that the maximum melting depth

is less than the thickness of the PCX coat on the surface. We should

point out that both methods have advantages and disadvantages. Even if

the method of putting the PCI underneath the wall is less efficient when

N and Nv are beyond some limits, it is ready to be used again and ruts

no restrictions on the wall surface. In these cases, a trade-off will be

reached when selecting the protective technology.
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